Factor and Independent Component Analysis

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2023

Recap

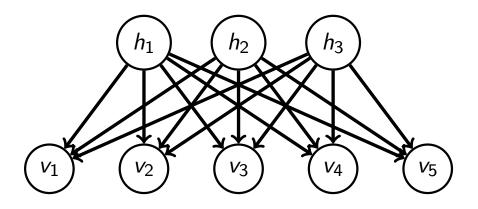
- Model-based learning from data
- Observed data as a sample from an unknown data generating distribution
- Learning using parametric statistical models and Bayesian models,
- ► Their relation to probabilistic graphical models
- Likelihood function, maximum likelihood estimation, and the mechanics of Bayesian inference
- Classical examples to illustrate the concepts

Applications of factor and independent component analysis

- ► Factor analysis and independent component analysis are two classical methods for data analysis.
- ► The origins of factor analysis (FA) are attributed to a 1904 paper by psychologist Charles Spearman. It is used in fields such as
 - Psychology, e.g intelligence research
 - Marketing
 - Wide range of physical and biological sciences
- Independent component analysis (ICA) has mainly been developed in the 90s. It can be used where FA can be used. Popular applications include
 - Neuroscience (brain imaging, spike sorting) and theoretical neuroscience
 - ► Telecommunications (de-convolution, blind source separation)
 - Finance (finding hidden factors)

Directed graphical model underlying FA and ICA

FA: factor analysis ICA: independent component analysis



- The visibles $\mathbf{v} = (v_1, \dots, v_D)$ are independent from each other given the latents $\mathbf{h} = (h_1, \dots, h_H)$, but generally dependent under the marginal $p(\mathbf{v})$.
- Explains statistical dependencies between (observed) v_i through (unobserved) h_i .
- ▶ Different assumptions on $p(\mathbf{v}|\mathbf{h})$ and $p(\mathbf{h})$ lead to different statistical models, and data analysis methods with markedly different properties.

Program

- 1. Factor analysis
- 2. Independent component analysis

Program

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case
- 2. Independent component analysis

Parametric model for factor analysis

- ▶ In factor analysis (FA), all random variables are Gaussian.
- ▶ Importantly, the number of latents *H* is assumed smaller than the number of visibles *D*.
- ▶ Latents: $p(\mathbf{h}) = \mathcal{N}(\mathbf{h}; \mathbf{0}, \mathbf{I})$ (uncorrelated standard normal)
- ► Conditional $p(\mathbf{v}|\mathbf{h};\theta)$ is Gaussian

$$p(\mathbf{v}|\mathbf{h}; oldsymbol{ heta}) = \mathcal{N}(\mathbf{v}; \mathbf{F}\mathbf{h} + \mathbf{c}, oldsymbol{\Psi})$$

Parameters θ are

- ightharpoonup Vector $\mathbf{c} \in \mathbb{R}^D$: sets the mean of \mathbf{v}
- ▶ $\mathbf{F} = (\mathbf{f}_1, \dots \mathbf{f}_H)$: $D \times H$ matrix with D > H Columns \mathbf{f}_i are called "factors", its elements the "factor loadings".
- $lackbox{\Psi}$: diagonal matrix $lackbox{\Psi} = \operatorname{diag}(\Psi_1, \dots, \Psi_D)$

Tuning parameter: the number of factors H

Parametric model for factor analysis

 $ho(\mathbf{v}|\mathbf{h}; \boldsymbol{\theta}) = \mathcal{N}(\mathbf{v}; \mathbf{F}\mathbf{h} + \mathbf{c}, \boldsymbol{\Psi})$ is equivalent to

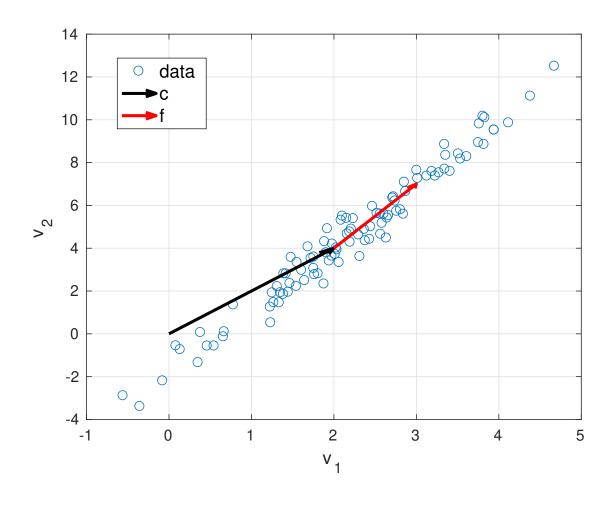
$$\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon}$$

$$= \sum_{i=1}^{H} \mathbf{f}_i h_i + \mathbf{c} + \boldsymbol{\epsilon} \qquad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon}; 0, \boldsymbol{\Psi})$$

- ▶ Data generation: Add H < D factors weighted by h_i to the constant vector \mathbf{c} , and corrupt the "signal" $\mathbf{Fh} + \mathbf{c}$ by additive Gaussian noise.
- **Fh** spans a H dimensional subspace of \mathbb{R}^D

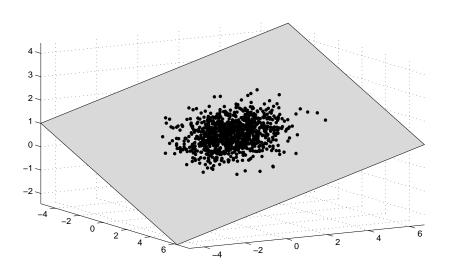
Interesting structure of the data is contained in a subspace

Example for D = 2, H = 1.

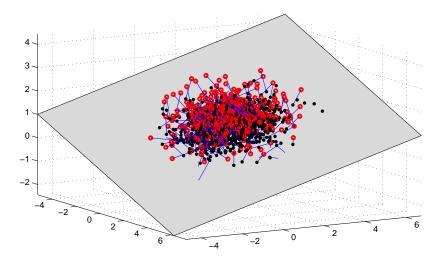


Interesting structure of the data is contained in a subspace

Example for D = 3, H = 2 ("pancake" in the 3D space)



Black points: $\mathbf{Fh} + \mathbf{c}$



Red points: $\mathbf{Fh} + \mathbf{c} + \boldsymbol{\epsilon}$ (points below the plane not shown)

(Figures courtesy of David Barber)

Basic results that we need

If x has density $\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_{x}, \mathbf{C}_{x})$, z density $\mathcal{N}(\mathbf{z}; \boldsymbol{\mu}_{z}, \mathbf{C}_{z})$, and $\mathbf{x} \perp \mathbf{z}$ then $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{z}$ has density

$$\mathcal{N}(\mathsf{y}; \mathsf{A} \pmb{\mu}_{\mathsf{x}} + \pmb{\mu}_{\mathsf{z}}, \mathsf{A} \mathsf{C}_{\mathsf{x}} \mathsf{A}^{ op} + \mathsf{C}_{\mathsf{z}})$$

(see e.g. Barber Result 8.3)

An orthonormal (orthogonal) matrix \mathbf{R} is a square matrix for which the transpose \mathbf{R}^{\top} equals the inverse \mathbf{R}^{-1} , i.e.

$$\mathbf{R}^{\top} = \mathbf{R}^{-1}$$
 or $\mathbf{R}^{\top} \mathbf{R} = \mathbf{R} \mathbf{R}^{\top} = \mathbf{I}$

(see e.g. Barber Appendix A.1)

Orthonormal matrices rotate points.

Factor rotation problem

Using the basic results, we obtain

$$egin{aligned} \mathbf{v} &= \mathbf{F}\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon} \ &= \mathbf{F}(\mathbf{R}\mathbf{R}^{ op})\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon} \ &= (\mathbf{F}\mathbf{R})(\mathbf{R}^{ op}\mathbf{h}) + \mathbf{c} + \boldsymbol{\epsilon} \ &= (\mathbf{F}\mathbf{R})\tilde{\mathbf{h}} + \mathbf{c} + \boldsymbol{\epsilon} \end{aligned}$$

Since $p(\mathbf{h}) = \mathcal{N}(\mathbf{h}; \mathbf{0}, \mathbf{I})$ and \mathbf{R} is orthonormal, $p(\tilde{\mathbf{h}}) = \mathcal{N}(\tilde{\mathbf{h}}; \mathbf{0}, \mathbf{I})$, and the two models

$$\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon}$$
 $\mathbf{v} = (\mathbf{F}\mathbf{R})\tilde{\mathbf{h}} + \mathbf{c} + \boldsymbol{\epsilon}$

produce data with exactly the same distribution.

Factor rotation problem

- ightharpoonup Two estimates $\hat{\mathbf{F}}$ and $\hat{\mathbf{F}}\mathbf{R}$ explain the data equally well.
- Estimation of the factor matrix **F** is not unique.
- With the Gaussianity assumption on h, there is a rotational ambiguity in the factor analysis model.
- ► The columns of **F** and **FR** span the same subspace, so that the FA model is best understood to define a subspace of the data space.
- ► The individual columns of **F** (factors) carry little meaning by themselves.
- ► There are post-processing methods that choose **R** after estimation of **F** so that the columns of **FR** have some desirable properties to aid interpretation, e.g. that they have as many zeros as possible (sparsity).

Likelihood function

▶ We have seen that the FA model can be written as

$$\mathsf{v} = \mathsf{Fh} + \mathsf{c} + \epsilon \qquad \mathsf{h} \sim \mathcal{N}(\mathsf{h}; \mathsf{0}, \mathsf{I}) \qquad \epsilon \sim \mathcal{N}(\epsilon; \mathsf{0}, \mathsf{\Psi})$$

with $\epsilon \perp \!\!\! \perp h$

From the basic results on multivariate Gaussians: v is Gaussian with mean and variance equal to

$$\mathbb{E}\left[\mathbf{v}
ight] = \mathbf{c} \qquad \mathbb{V}\left[\mathbf{v}
ight] = \mathbf{F}\mathbf{F}^{ op} + \mathbf{\Psi}$$

- Likelihood is given by likelihood for multivariate Gaussian.
- ▶ But due to the form of the covariance matrix of **v**, closed form solution is not possible and iterative methods are needed (see e.g. Barber Section 21.2, not examinable).

Probabilistic principal component analysis as special case

- In FA, the variances Ψ_i of the additive noise ϵ can be different for each dimension.
- Probabilistic principal component analysis (PPCA) is obtained for

$$\Psi_i = \sigma^2$$
 $\Psi = \sigma^2 \mathbf{I}$

► FA has a richer description of the additive noise than PCA.

Program

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case
- 2. Independent component analysis

Program

1. Factor analysis

- 2. Independent component analysis
 - Parametric model
 - Ambiguities in the model
 - sub-Gaussian and super-Gaussian pdfs
 - Learning the parameters by maximum likelihood estimation

Parametric model for independent component analysis

- In ICA, unlike in FA, the latents are assumed to be non-Gaussian. (one latent can be assumed to be Gaussian)
- \triangleright The latents h_i are assumed to be statistically independent

$$p_{\mathsf{h}}(\mathsf{h}) = \prod_i p_h(h_i)$$

ightharpoonup Conditional $p(\mathbf{v}|\mathbf{h};\theta)$ is generally Gaussian

$$p(\mathbf{v}|\mathbf{h}; \boldsymbol{\theta}) = \mathcal{N}(\mathbf{v}; \mathbf{F}\mathbf{h} + \mathbf{c}, \boldsymbol{\Psi})$$
 or $\mathbf{v} = \mathbf{F}\mathbf{h} + \mathbf{c} + \boldsymbol{\epsilon}$

Called "noisy" ICA

- The number of latents H can be larger than D ("overcomplete" case) or smaller ("undercomplete" case).
- We here consider the widely used special case where the noise is zero and H = D ("noise-free square ICA model").

Parametric model for independent component analysis

In ICA, the matrix \mathbf{F} is typically denoted by \mathbf{A} and called the "mixing" matrix. The model is

$$\mathbf{v} = \mathbf{Ah}$$
 $p_{\mathbf{h}}(\mathbf{h}) = \prod_{i=1}^{D} p_h(h_i)$

where the h_i are typically assumed to have zero mean and unit variance.

Ambiguities

- ightharpoonup Denote the columns of **A** by a_i .
- ► From

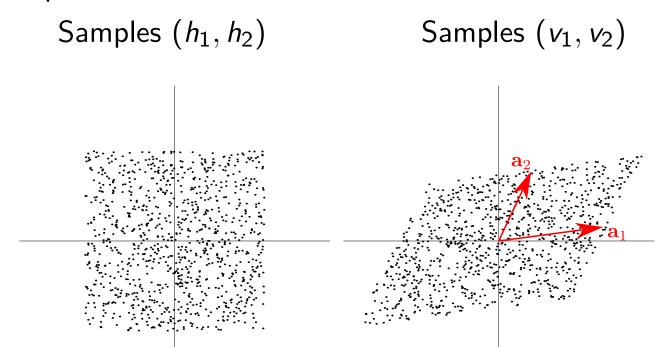
$$\mathbf{v} = \mathbf{A}\mathbf{h} = \sum_{i=1}^{D} \mathbf{a}_i h_i = \sum_{k=1}^{D} \mathbf{a}_{i_k} h_{i_k} = \sum_{i=1}^{D} (\mathbf{a}_i \alpha_i) \frac{1}{\alpha_i} h_i$$

it follows that the ICA model has an ambiguity regarding the ordering of the columns of $\bf A$ and their scaling.

- ► The unit variance assumption on the latents fixes the scaling but not the ordering ambiguity.
- Note: for non-Gaussian latents, there is no rotational ambiguity.

Non-Gaussian latents: variables with sub-Gaussian pdfs

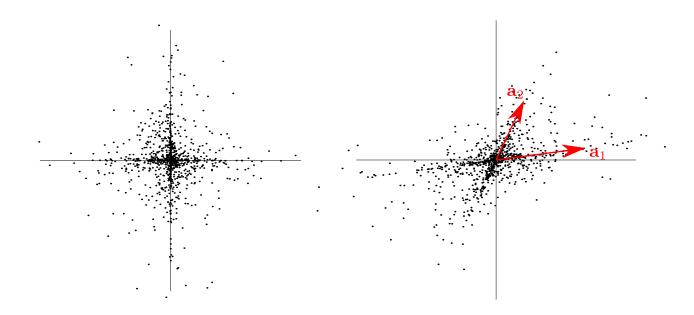
- ➤ Sub-Gaussian pdf: (assume variables have mean zero) pdf that is less peaked at zero than a Gaussian of the same variance.
- Example: uniform random variable



Horizontal axes: h_1 and v_1 . Vertical axes h_2 and v_2 . Not in the same scale (Adapted from Figures 7.5 and 7.6, *Independent Component Analysis* by Hyvärinen, Karhunen, and Oja).

Non-Gaussian latents: variables with super-Gaussian pdfs

- ➤ Super-Gaussian pdf: (assume variables have mean zero) pdf that is more peaked at zero than a Gaussian of the same variance.
- Example: Laplace random variable, where $p(h_i) \propto \exp(-\sqrt{2}|h_i|)$ Samples (h_1, h_2) Samples (v_1, v_2)



Horizontal axes: h_1 and v_1 . Vertical axes h_2 and v_2 . Not in the same scale (Adapted from Figures 7.8 and 7.9, *Independent Component Analysis* by Hyvärinen, Karhunen, and Oja).

Distribution of the visibles

The mapping $\mathbf{h} \mapsto \mathbf{v} = \mathbf{A}\mathbf{h}$ is deterministic and invertible. By the laws of transformation of random variables

$$p(\mathbf{v}; \mathbf{A}) = p_{\mathbf{h}}(\mathbf{A}^{-1}\mathbf{v})|\det \mathbf{A}^{-1}|$$

(see e.g. Barber Result 8.1)

Denote the inverse of A by B

$$\mathbf{A}^{-1}\mathbf{v} = \mathbf{B}\mathbf{v} = egin{pmatrix} \mathbf{b}_1\mathbf{v} \ dots \ \mathbf{b}_D\mathbf{v} \end{pmatrix}$$

where the $\mathbf{b}_1, \dots, \mathbf{b}_D$ are the *row* vectors of the matrix \mathbf{B} .

Given the independence of the latents, we thus have

$$p(\mathbf{v}; \mathbf{A}) = p_{\mathbf{h}}(\mathbf{A}^{-1}\mathbf{v})|\det \mathbf{A}^{-1}| = p_{\mathbf{h}}(\mathbf{B}\mathbf{v})|\det \mathbf{B}|$$
$$= \left[\prod_{j=1}^{D} p_{h}(\mathbf{b}_{j}\mathbf{v})\right]|\det \mathbf{B}|$$

Likelihood function

- ➤ Since the mapping from **A** to **B** is invertible. We can write the likelihood function in terms of the matrix **B**,
- ▶ Given iid data $\mathcal{D} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, we obtain

$$L(\mathbf{B}) = \prod_{i=1}^{n} \left[\prod_{j=1}^{D} p_h(\mathbf{b}_j \mathbf{v}_i) \right] |\det \mathbf{B}|$$

The log-likelihood is given by

$$\ell(\mathbf{B}) = \sum_{i=1}^{n} \sum_{j=1}^{D} \log p_h(\mathbf{b}_j \mathbf{v}_i) + n \log |\det \mathbf{B}|$$

► Can be optimised using gradient ascent (slow) or with more powerful methods (see Barber 21.6, not examinable)

The likelihood and the distribution of the latents

$$\ell(\mathbf{B}) = \sum_{i=1}^{n} \sum_{j=1}^{D} \log p_h(\mathbf{b}_j \mathbf{v}_i) + n \log |\det \mathbf{B}|$$

- **B** and hence the mixing **A** can be uniquely estimated, up to the scaling and order ambiguity, as long as the p_h are non-Gaussian (one latent Gaussian is allowed).
- Non-Gaussianity assumption on the latents solves the "factor rotation" problem in FA.
- ightharpoonup The pdf p_h of the latents enter the (log) likelihood.
- ▶ If not known, they have to be estimated, which is difficult.
- It turns out that learning whether p_h is super-Gaussian or sub-Gaussian is enough. (not examinable, Section 9.1.2 of *Independent Component Analysis* by Hyvärinen, Karhunen, and Oja)

Program recap

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case

2. Independent component analysis

- Parametric model
- Ambiguities in the model
- sub-Gaussian and super-Gaussian pdfs
- Learning the parameters by maximum likelihood estimation