
Exact Inference for Hidden Markov Models

Chris Williams
(based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2023

Recap

I Assuming a factorisation / set of statistical independencies
allowed us to efficiently represent the pdf or pmf of random
variables

I Factorisation can be exploited for inference
I by using the distributive law
I by re-using already computed quantities

I Inference for general factor graphs (variable elimination)
I Inference for factor trees
I Sum-product and max-product/max-sum message passing

PMR 2023 2 / 41

Program

1. Markov models

2. Inference by message passing

PMR 2023 3 / 41

Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case
Linear Dynamical System (LDS)

2. Inference by message passing

PMR 2023 4 / 41

Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.
I speech modelling (speech recognition)
I text modelling (natural language processing)
I gene sequence modelling (bioinformatics)
I spike train modelling (neuroscience)
I object tracking (robotics)

PMR 2023 5 / 41

Markov chains
I Chain rule with ordering x1, . . . , xd

p(x1, . . . , xd) =
d∏

i=1
p(xi |x1, . . . , xi−1)

I If p satisfies ordered Markov property, the number of variables
in the conditioning set can be reduced to a subset
πi ⊆ {x1, . . . , xi−1}

I Not all predecessors but only subset πi is “relevant” for xi .
I L-th order Markov chain: πi = {xi−L, . . . , xi−1}

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−L, . . . , xi−1)

I 1st order Markov chain: πi = {xi−1}

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

PMR 2023 6 / 41

Markov chain — DAGs

Chain rule

x1 x2 x3 x4

Second-order Markov chain

x1 x2 x3 x4

First-order Markov chain

x1 x2 x3 x4

PMR 2023 7 / 41

Vector-valued Markov chains
I While not explicitly discussed, the graphical models extend to

vector-valued variables.
I Chain rule with ordering x1, . . . , xd

p(x1, . . . , xd) =
d∏

i=1
p(xi |x1, . . . , xi−1)

x1 x2 x3 x4

I 1st order Markov chain:

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

x1 x2 x3 x4

PMR 2023 8 / 41

Modelling time series

I Index i may refer to time t
I For example, 1st order Markov chain of length T :

p(x1, . . . , xT) =
T∏

t=1
p(xt |xt−1)

I Only the last time point xt−1 is relevant for xt .

PMR 2023 9 / 41

Transition distribution
(Consider 1st order Markov chain.)
I p(xi |xi−1) is called the transition distribution
I For discrete random variables, p(xi |xi−1) is defined by a

transition matrix A(i)

p(xi = k|xi−1 = k ′) = A(i)
k,k′ (A(i)

k′,k convention is also used)

I For continuous random variables, p(xi |xi−1) is a conditional
pdf, e.g.

p(xi |xi−1) = 1√
2πσ2

i

exp
(
−(xi − fi (xi−1))2

2σ2
i

)

for some function fi
I Homogeneous Markov chain: p(xi |xi−1) does not depend on i ,

e.g.
A(i) = A or σi = σ, fi = f

I Inhomogeneous Markov chain: p(xi |xi−1) does depend on i
PMR 2023 10 / 41

Hidden Markov model
DAG:

v1 v2 v3 v4

h1 h2 h3 h4

I 1st order Markov chain on hidden (latent) variables hi .
I Each visible (observed) variable vi only depends on the

corresponding hidden variable hi
I Factorisation

p(h1:d , v1:d) = p(v1|h1)p(h1)
d∏

i=2
p(vi |hi)p(hi |hi−1)

I The visibles are d-connected if hiddens are not observed
I Visibles are d-separated (independent) given the hiddens
I The his model/explain all dependencies between the vis

PMR 2023 11 / 41

Emission distribution

I p(vi |hi) is called the emission distribution
I Discrete-valued vi and hi :

p(vi |hi) can be represented as a matrix
I Discrete-valued vi and continuous-valued hi :

p(vi |hi) is a conditional pmf.
I Continuous-valued vi : p(vi |hi) is a density
I As for the transition distribution, the emission distribution

p(vi |hi) may depend on i or not.
I If neither the transition nor the emission distribution depend

on i , we have a stationary (or homogeneous) hidden Markov
model (HMM).

PMR 2023 12 / 41

Gaussian emission model with discrete-valued latents

I Special case: hi ⊥⊥ hi−1 , and vi ∈ Rm, hi ∈ {1, . . . ,K}

p(h = k) = pk

p(v|h = k) = 1
| det 2πΣΣΣk |1/2 exp

(
−1
2(v−µµµk)>ΣΣΣ−1

k (v−µµµk)
)

for all hi and vi .
I DAG

h1

v1

h2

v2

. . .

hd

vd

I Corresponds to d iid draws from a Gaussian mixture model
with K mixture components
I Mean E[v|h = k] = µµµk
I Covariance matrix V[v|h = k] = ΣΣΣk

PMR 2023 13 / 41

Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where
cluster membership at “time” i (the value of hi) generally depends
on cluster membership at “time” i − 1 (the value of hi−1).

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Example for vi ∈ R2, hi ∈ {1, 2, 3}. Left: p(v|h = k). Right: samples
(Bishop, Figure 13.8)

PMR 2023 14 / 41

Linear Dynamical System (LDS)

I Continuous-valued hidden and visible state
I Transition model is linear

ht+1 = Aht + nh
t+1, nh

t+1 ∼ N(0,Σh)

I Stable dynamics if all eigenvalues of A have magnitude < 1
I Emission model is linear

vt = Cht + nv
t , nv

t ∼ N(0,Σv)

I If p(h1) is Gaussian, the whole model is jointly Gaussian
I Computation of p(ht |v1:t) is the filtering problem: for the

LDS, this was solved by Kalman (1960), hence it is termed
Kalman filtering

I Uses: navigational and guidance systems

PMR 2023 15 / 41

Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case
Linear Dynamical System (LDS)

2. Inference by message passing

PMR 2023 16 / 41

Program

1. Markov models

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the

α-recursion
Smoothing: Sum-product message passing yields the α-β

recursion

PMR 2023 17 / 41

The classical inference problems

(Considering the index i to refer to time t)

Filtering (Inferring the present) p(ht |v1:t)
Smoothing (Inferring the past) p(ht |v1:u) t < u
Prediction (Inferring the future) p(ht |v1:u) t > u

p(vt |v1:u) t > u
Most likely (Viterbi algorithm) argmaxh1:t p(h1:t |v1:t)
hidden path
Posterior (Forward filtering h1:t ∼ p(h1:t |v1:t)
sampling backward sampling)

For the HMM, all tasks can be solved via message passing
(sum-product or max-sum/max-product algorithm).

PMR 2023 18 / 41

The classical inference problems

������������
������������
������������
������������

������������
������������
������������
������������

��
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

��
��������
��������
��������

��������
��������
��������
��������

����
����
����
����

����
����
����
����

t

t

t

filtering

smoothing

prediction

denotes the extent of data
available

Figure based on Fig. 1.0-1 of Gelb et al (1974)

PMR 2023 19 / 41

Factor graph for hidden Markov model
DAG:

v1 v2 v3 v4 v5 v6

h1 h2 h3 h4 h5 h6

Factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

p(h1)

h1
p(h2|h1)

h2
p(h3|h2)

h3
p(h4|h3)

h4
p(h5|h4)

h5
p(h6|h5)

h6

PMR 2023 20 / 41

Filtering p(ht |v1:t): factor graph

I When computing p(ht |v1:t), the v1:t = (v1, . . . , vt) are
assumed known and are kept fixed (e.g. t = 4)

I For s = 1, . . . , t, the factors p(vs |hs) depend only on hs .
Combine them with p(hs |hs−1) and form new factors φs

φ1(h1) = p(v1|h1)p(h1), φs(hs−1, hs) = p(vs |hs)p(hs |hs−1)

I Factor graph

v5

p(v5|h5)

v6

p(v6|h6)

φ1
h1

φ2
h2

φ3
h3

φ4
h4

p(h5|h4)
h5

p(h6|h5)
h6

PMR 2023 21 / 41

Filtering p(ht |v1:t): messages
Messages needed to compute p(h4|v1:4): (t = 4)

φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)
h5

p(h6|h5)
h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

There is a simplification:
I The message from p(h5|h4) to h4 equals 1!
I Follows from message passing starting at leaves v5 and v6

since the factors p(.|.) are conditionals and sum to one, e.g.∑
v6

p(v6|h6) = 1
∑
h6

p(h6|h5) = 1

PMR 2023 22 / 41

Filtering p(ht |v1:t): reduce to inference on chain

I A message is an effective factor obtained by summing out all
variables downstream from where the message is coming from.

I This means that we can replace the factor sub-graph to the
right of the last observed variable vt and latent ht (here v4
and h4) with the effective factor.

I Effective factor is 1, so that we can just remove the sub-graph.
I Also can be seen by “marginalising out” the unobserved future
I Reduces problem to message passing on a chain.

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ → → → → → →

PMR 2023 23 / 41

Filtering p(ht |v1:t): message passing on the chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → → → → → →

I Initialisation: µφ1→h1(h1) = φ1(h1)
I Variable node h1 copies the message:

µh1→φ2(h1) = µφ1→h1(h1)
I Same for other variable nodes. Let us write the algorithm in

terms of µφi→hi (hi) messages only.
I Message from φ2 to h2:

µφ2→h2(h2) =
∑
h1

φ2(h1, h2)µφ1→h1(h1)

I Message from φs to hs , for s = 2, . . . , t:

µφs→hs (hs) =
∑
hs−1

φs(hs−1, hs)µφs−1→hs−1(hs−1)

PMR 2023 24 / 41

Filtering p(ht |v1:t): message passing on the chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → → →

I The messages µφs→hs (hs) are traditionally denoted by α(hs).
I Message passing for filtering becomes:

I Init: α(h1) = φ1(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) =
∑
hs−1

φs(hs−1, hs)α(hs−1)

= p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

I Algorithm known as “alpha-recursion”.
I Desired probability:

p(ht |v1:t) = 1
Zt
α(ht) Zt =

∑
ht

α(ht)

PMR 2023 25 / 41

Filtering p(ht |v1:t): likelihood

I Joint model for h1:t and v1:t

p(h1:t , v1:t) = p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

I Conditional p(h1:t |v1:t) is proportional to the joint

p(h1:t |v1:t) ∝ p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

I Normalising constant Z is the likelihood/marginal p(v1:t)
I From results on message passing: Zt that normalises the

marginal is also the normaliser of p(h1:t |v1:t), i.e. p(v1:t):

Zt =
∑
ht

α(ht) = p(v1:t)

PMR 2023 26 / 41

Filtering p(ht |v1:t): interpretation

I We have seen that p(ht |v1:t) ∝ α(ht).
φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)
h5

p(h6|h5)
h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

I Consider p(hs |v1:s) with s < t (e.g. s = 2 and t = 4)

φ1

h1

φ2

h2

p(h3|h2)

h3

p(h4|h3)

h4

p(h5|h4)
h5

p(h6|h5)
h6

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

↑

↑

↑

↑

I Messages to the left of hs are the same as for p(ht |v1:t).
I Messages to the right of hs are all equal to one.

PMR 2023 27 / 41

Filtering p(ht |v1:t): interpretation

I This means that the intermediate α(hs) that we compute
when computing p(ht |v1:t) are unnormalised posteriors
themselves:

α(hs) ∝ p(hs |v1:s)

Note that we condition on v1:s and not v1:t .
I Moreover p(v1:s) = ∑

h(s) α(hs).
I Hence, the alpha-recursion gives us posteriors p(hs |v1:s) and

likelihoods p(v1:s) for s = 1, . . . , t.

PMR 2023 28 / 41

Filtering p(ht |v1:t): interpretation
I Proof by induction shows that α(hs) = p(hs , v1:s).
I Base case holds by definition: α(h1) = p(h1)p(v1|h1).
I Assume it holds for α(hs−1). Then:

α(hs) =
∑
hs−1

p(vs |hs)p(hs |hs−1)α(hs−1)

(induction hyp)=
∑
hs−1

p(vs |hs)p(hs |hs−1)p(hs−1, v1:s−1)

(Markov prop)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs |hs−1, v1:s−1)p(hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs , hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs , hs , hs−1, v1:s−1)

(marginalise)= p(vs , hs , v1:s−1)

= p(hs , v1:s)
PMR 2023 29 / 41

Filtering p(ht |v1:t): interpretation

I Update rule as prediction-correction algorithm:

α(hs) (prev slide)= p(hs , v1:s)
(product rule)= p(vs |hs , v1:s−1)p(hs , v1:s−1)
(Markov prop)= p(vs |hs)p(hs , v1:s−1)

∝ p(vs |hs)︸ ︷︷ ︸
correction

p(hs |v1:s−1)︸ ︷︷ ︸
prediction

I The correction term updates the predictive distribution
p(hs |v1:s−1) to include the new data vs .

PMR 2023 30 / 41

Filtering p(ht |v1:t): summary

I Conditioning reduces the factor graph for the HMM to a
chain.

I Message passing for filtering:
I Init: α(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

which involves prediction of hs given v1:s−1 and correction
using new datum vs .

I α(hs) = p(hs , v1:s) ∝ p(hs |v1:s) and p(v1:s) = ∑
hs α(hs), for

s = 1, . . . , t

PMR 2023 31 / 41

Smoothing p(ht |v1:u), t < u: reduce to inference on chain

I Unlike in filtering where we predict ht from data up to time t,
in smoothing we have observations from later time points.

I Messages needed to compute p(ht |v1:u) (e.g. t = 2, u = 4)

φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)
h5

p(h6|h5)
h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

I As in filtering, we can simplify to a chain
φ1

h1

φ2

h2

φ3

h3

φ4

h4
→ → → ← ← ← ←

PMR 2023 32 / 41

Smoothing p(ht |v1:u), t < u: message passing on chain

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ → → ← ← ← ←

I Messages → from factor leaf φ1 to ht same as in filtering.
I Messages ← from variable leaf hu to ht via message passing.
I Init: µhu→φu (hu) = 1
I Next message µφu→hu−1(hu−1) = ∑

hu φu(hu−1, hu)
I Variable nodes just copy the incoming message. Write the

algorithm in terms of β(hs) = µφs+1→hs (hs) only:

β(hs−1) =
∑
hs

φs(hs−1, hs)β(hs)

=
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

I Gives “alpha-beta recursion” for smoothing.
PMR 2023 33 / 41

Smoothing p(ht |v1:u), t < u: message passing on chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → ← ←

I → Forwards via alpha-recursion
I Init: α(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

I ← Backwards via beta-recursion
I Init: β(hu) = 1
I Update rule for s = u, . . . t + 1:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

I Desired probability:

p(ht |v1:u) = 1
Zu

t
α(ht)β(ht) Zu

t =
∑
ht

α(ht)β(ht)

PMR 2023 34 / 41

Smoothing p(ht |v1:u), t < u: interpretation
I We now show that β(hs) equals the probability of the

upstream observations given hs ,

β(hs) = p(vs+1:u|hs) for all s < u

I First consider β(hu−1):

β(hu−1) =
∑
hu

p(vu|hu)p(hu|hu−1)β(hu)︸ ︷︷ ︸
1

(Markov prop)=
∑
hu

p(vu|hu, hu−1)p(hu|hu−1)

(product rule)=
∑
hu

p(vu, hu|hu−1)

(marginalise)= p(vu|hu−1)

I Hence β(hs) = p(vs+1:u|hs) holds for s = u − 1. Provides the
base case for a proof by induction.

PMR 2023 35 / 41

Smoothing p(ht |v1:u), t < u: interpretation
Assume β(hs) = p(vs+1:u|hs) holds. Then:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

(induction hyp)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs)

(Markov prop)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs , vs)

(product rule)=
∑
hs

p(vs:u|hs)p(hs |hs−1)

(Markov prop)=
∑
hs

p(vs:u|hs , hs−1)p(hs |hs−1)

(product rule)=
∑
hs

p(vs:u, hs |hs−1)

(marginalise)= p(vs:u|hs−1)

By induction, β(hs) = p(vs+1:u|hs) for all s < u.
PMR 2023 36 / 41

Doing more with the α(hs), β(hs)

I Due to link to message passing: Knowing all α(hs), β(hs) =⇒
knowing all marginals and all joints of neighbouring latents
given the observed data, which will be needed when
estimating the parameters of HMMs (see later).

I We can use the α(hs) for predictions (see exercises).
I We can use the α(hs) for sampling posterior trajectories, i.e.

to sample from p(h1, . . . ht |v1, . . . , vt) (see exercises).
I Algorithms extend to the case of continuous random variables:

replace sums with integrals.

PMR 2023 37 / 41

Example: Harmonizing Chorales in the Style of J S Bach

I Moray Allan and Chris Williams (NIPS 2004) “Harmonising
Chorales by Probabilistic Inference”

I Visible states are the melody (quarter notes)
I Hidden states are the harmony (which chord)
I Trained using labelled melody/harmony data from Bach

chorales
I Task: find Viterbi alignment for harmony given melody, or

sample from p(harmony|melody.)
I Actually it is a bit more complicated. HMMs used for three

subtasks: harmonic skeleton, chord skeleton, ornamentation

PMR 2023 38 / 41

Further reading

Exact inference for Hidden Markov models is well-covered in the
standard textbooks, e.g.

I Bishop (2006) secs. 13.2.2, 13.2.3, 13.2.5
I Barber sec. 23.2

PMR 2023 39 / 41

Program recap

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case
Linear Dynamical System (LDS)

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the α-recursion
Smoothing: Sum-product message passing yields the α-β recursion

PMR 2023 40 / 41

Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2023 CC BY 4.0 cb.

PMR 2023 41 / 41

https://creativecommons.org/licenses/by/4.0/

	Markov models
	Markov chains
	Transition distribution
	Hidden Markov models
	Emission distribution
	Mixture of Gaussians as special case
	Linear Dynamical System (LDS)

	Inference by message passing
	Inference: filtering, prediction, smoothing, Viterbi
	Filtering: Sum-product message passing yields the -recursion
	Smoothing: Sum-product message passing yields the - recursion

