
Exact Inference

Chris Williams
(based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2023

Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

I Issue 1: To specify p(x, y, z), we need to specify
K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?

I Directed and undirected graphical models, factor graphs
I Factorisation and independencies

PMR 2023 2 / 79

Recap

p(x|yo) =

∑
z

p(x,yo ,z)∑
x,z

p(x,yo ,z)

I Issue 2: The sum in the numerator goes over the order of
Kd = 10500 non-negative numbers and the sum in the
denominator over the order of K 2d = 101000, which is
impossible to compute.
Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?

I Note: we do not want to introduce new assumptions but
exploit those that we made to deal with issue 1.

I Quantities of interest:
I p(x|yo) (marginal inference)
I argmaxx p(x|yo) (inference of most probable states)
I E [g(x) | yo] for some function g (posterior expectations)

PMR 2023 3 / 79

Assumptions

Unless otherwise mentioned, we here assume discrete valued
random variables whose joint pmf factorises as

p(x1, . . . , xd) ∝
m∏

i=1
φi(Xi),

with Xi ⊆ {x1, . . . , xd} and xi ∈ {1, . . . ,K}.

Note:
I Includes case where (some of) the φi are conditionals
I The xi could be categorical taking on maximally K different

values.

PMR 2023 4 / 79

Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states for factor trees

PMR 2023 5 / 79

Program

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states for factor trees

PMR 2023 6 / 79

Basic ideas of variable elimination

1. Use the distributive law ab + ac = a(b + c) to exploit the
factorisation (∑∏

→
∏∑):

reduces the overall dimensionality of the domain of the factors
in the sum and thereby the computational cost.

2. Recycle/cache results

PMR 2023 7 / 79

Example: full factorisation

I Consider discrete-valued random variables
x1, x2, x3 ∈ {1, . . . ,K}

I Assume pmf factorises p(x1, x2, x3) ∝ φ1(x1)φ2(x2)φ3(x3)
I Task: compute p(x1 = k) for k ∈ {1, . . . ,K}
I We can use the sum-rule

p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3)

Sum over K 2 terms for each k (value of x1).
I Pre-computing p(x1, x2, x3) for all K 3 configurations and then

computing the sum is neither necessary nor a good idea
I Exploit factorisation when computing p(x1 = k).

PMR 2023 8 / 79

Example: full factorisation

(sum rule) p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3) (1)

(factorisation) ∝
∑
x2

∑
x3
φ1(k)φ2(x2)φ3(x3) (2)

(distr. law) ∝ φ1(k)
∑
x2

∑
x3
φ2(x2)φ3(x3) (3)

(distr. law) ∝ φ1(k)
[∑

x2
φ2(x2)

] [∑
x3
φ3(x3)

]
(4)

Distributive law changes
∑∏

in (2) to
∏∑

in (4).

PMR 2023 9 / 79

Example: full factorisation

p(x1 = k) ∝ φ1(k)
[∑

x2
φ2(x2)

] [∑
x3
φ3(x3)

]
(5)

What’s the point?
I Because of the factorisation (independencies) we do not need

to evaluate and store the values of p(x1, x2, x3) for all K 3

configurations of the random variables.
I 2 sums over K numbers vs. 1 sum over K 2 numbers
I Recycling/caching of already computed quantities: we only

need to compute [∑
x2
φ2(x2)

] [∑
x3
φ3(x3)

]

once; the value can be re-used when computing p(x1 = k) for
different k.

PMR 2023 10 / 79

Example: general factor graph

I Example:

p(x1, . . . , x6) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)

x1
φA

x2

x4

φB
x3

φC
x5

φD
x6

I Task: Compute p(x1, x3)
I Note the structural changes in the graph during variable

elimination

PMR 2023 11 / 79

Example: general factor graph (cont)
Task: Compute p(x1, x3)

First eliminate x6
p(x1, . . . , x5) =

∑
x6

p(x1, . . . , x6)

(factorisation) ∝
∑
x6
φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)

(distr. law) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)
∑
x6
φD(x3, x6)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φ̃6(x3)

x1
φA

x2

x4

φB
x3

φC
x5

x6
φD

φ̃6

PMR 2023 12 / 79

Example: general factor graph (cont)

Task: Compute p(x1, x3)
Eliminate x5

p(x1, . . . , x4) ∝
∑
x5
φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φ̃6(x3)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)
∑
x5
φC (x3, x5)

∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)φ̃5(x3)

x1
φA

x2

x4

φB
x3

φC
x5

φ̃5

φ̃6

PMR 2023 13 / 79

Example: general factor graph (cont)

Define φ̃56(x3) = φ̃6(x3)φ̃5(x3)

p(x1, . . . , x4) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃6(x3)φ̃5(x3)
∝ φA(x1, x2, x4)φB(x2, x3, x4)φ̃56(x3)

x1
φA

x2

x4

φB
x3

φ̃5

φ̃6

φ̃56

PMR 2023 14 / 79

Example: general factor graph (cont)
Task: Compute p(x1, x3)Eliminate x2

p(x1, x3, x4) ∝
∑
x2
φA(x1, x2, x4)φB(x2, x3, x4)φ̃56(x3)

∝ φ̃56(x3)
∑
x2
φA(x1, x2, x4)φB(x2, x3, x4)︸ ︷︷ ︸

K3 times K add/mult⇒ O(K4) cost

∝ φ̃56(x3)φ̃2(x1, x3, x4)
Other justification for the cost: φA(x1, x2, x4)φB(x2, x3, x4) equals a compound factor
φ∗(x1, x2, x3, x4) that requires K4 space when represented as a table. Summing out x2
for all combinations of (x1, x3, x4) touches each table-entry once ⇒ O(K4) cost.

x1

φA

x2

x4

φB
x3

φ̃56φA

x2

x4

φB
x3

φ̃56

φ̃2

x4

x3
φ̃56

PMR 2023 15 / 79

Example: general factor graph (cont)
Task: Compute p(x1, x3)

Eliminate x4

p(x1, x3) ∝
∑
x4
φ̃56(x3)φ̃2(x1, x3, x4)

∝ φ̃56(x3)
∑
x4
φ̃2(x1, x3, x4)

∝ φ̃56(x3)φ̃24(x1, x3)

x1
φ̃24

x3
φ̃56

Normalisation to obtain p(x1 = k, x3 = k ′) for any k, k ′:

p(x1 = k, x3 = k ′) = φ̃56(x3 = k ′)φ̃24(x1 = k, x3 = k ′)∑
x1,x3 φ̃56(x3)φ̃24(x1, x3)

PMR 2023 16 / 79

Remarks

I Compared to precomputing K 6 numbers and then
marginalising out variables, using the factorisation reduces the
cost to O(K 4).

I Caching: Most of the intermediate quantities can be re-used
when computing p(x1 = k, x3 = k ′) for different k, k ′

I Structural changes in the graph during variable elimination:
I Eliminated leaf-variable and factor node
→ factor node

I Factor nodes that depend on the same variables
→ single factor node

I Factor nodes between neighbours of the eliminated variable
→ single factor node connecting all neighbours

PMR 2023 17 / 79

Variable (bucket) elimination
Without loss of generality: Given p(x1, . . . , xd) ∝ ∏m

i φi(Xi)
compute the marginal p(Xtarget) for some Xtarget ⊆ {x1, . . . , xd}.
I Assume that at iteration k, you have the pmf over dk = d − k

variables X k = (xi1 , . . . , xidk) that factorises as

p(X k) ∝
mk∏
i=1

φk
i (X k

i)

I Decide which variable to eliminate. Call it x∗.
(x∗ ∈ X k , x∗ /∈ Xtarget)

I Let X k+1 be equal to X k with x∗ removed. We have

(sum rule) p(X k+1) =
∑
x∗

p(X k) (6)

(factorisation) ∝
∑
x∗

mk∏
i=1

φk
i (X k

i) (7)

PMR 2023 18 / 79

Variable (bucket) elimination (cont.)

p(X k+1) ∝
∑
x∗

∏
i :x∗ /∈X k

i

φk
i (X k

i)
∏

i :x∗∈X k
i

φk
i (X k

i) (8)

(distr. law) ∝
∏

i :x∗ /∈X k
i

φk
i (X k

i)
∑
x∗

∏
i :x∗∈X k

i

φk
i (X k

i)

︸ ︷︷ ︸
compound factor φk

∗(X k
∗)

(9)

∝

 ∏
i :x∗ /∈X k

i

φk
i (X k

i)

 ∑
x∗
φk
∗(X k

∗)︸ ︷︷ ︸
new factor φ̃k

∗(X̃ k
∗)

(10)

X k
∗ is the union of all X k

i that contain x∗, and X̃ k
∗ is X k

∗ with x∗
removed,

X k
∗ =

⋃
i :x∗∈X k

i

X k
i X̃ k

∗ = X k
∗ \ x∗ (11)

PMR 2023 19 / 79

Variable (bucket) elimination (cont.)

I By re-labelling the factors and variables, we obtain

p(X k+1) ∝

 ∏
i :x∗ /∈X k

i

φk
i (X k

i)

 φ̃k
∗(X̃ k

∗) (12)

∝
mk+1∏
i=1

φk+1
i (X k+1

i), (13)

which has the same form as p(X k).
I Set k = k + 1 and decide which variable x∗ to eliminate next.
I To compute p(Xtarget) stop when X k = Xtarget, followed by

normalisation.

PMR 2023 20 / 79

How to choose the elimination variable x ∗?

I When we marginalise over x∗ in iteration k, we generate the
temporary compound factor φk

∗ that depends on

X k
∗ =

⋃
i :x∗∈X k

i

X k
i (14)

Contains x∗ and the variables with which x∗ shares a factor
node in the factor graph (“neighbours”).

I Ex.: p(x1, . . . , x6) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)
If we eliminated x∗ = x3: X∗ = {x2, x3, x4, x5, x6}

x1
φA

x2

x4

φB
x3

φC
x5

φD
x6

PMR 2023 21 / 79

How to choose the elimination variable x ∗?

I When we marginalise over x∗ in iteration k, we generate the
temporary compound factor φk

∗ that depends on

X k
∗ =

⋃
i :x∗∈X k

i

X k
i (15)

Contains x∗ and the variables with which x∗ shares a factor
node in the factor graph (“neighbours”).

I Eliminating x∗ costs KMk where Mk is the number of
variables in X k

∗ .
I Optimal choice of elimination order is difficult since the size of

the factors can change when we eliminate variables (for details,
see e.g. Koller, Section 9.4, not examinable)

I Heuristic: in each iteration, choose x∗ in a greedy way so that
X k
∗ is small, i.e. the variable with the least number of

neighbours in the factor graph (e.g. x5 or x6 in the example)
PMR 2023 22 / 79

Computing conditionals

I The same approach can be used to compute conditionals.
I Example: Given

p(x1, . . . , x6) ∝ φA(x1, x2, x4)φB(x2, x3, x4)φC (x3, x5)φD(x3, x6)

assume you want to compute p(x1|x3 = α)
I We can write

p(x1, x2, x4, x5, x6|x3 = α) ∝ p(x1, x2, x3 = α, x4, x5, x6)
∝ φA(x1, x2, x4)φαB(x2, x4)φαC (x5)φαD(x6)

and consider p(x1, x2, x4, x5, x6|x3 = α) to be a pdf/pmf
p̃(x1, x2, x4, x5, x6) defined up to the proportionality factor.

I We can compute p(x1|x3 = α) = p̃(x1) by applying variable
elimination to p̃(x1, x2, x4, x5, x6).

PMR 2023 23 / 79

What if we have continuous random variables?

I Conceptually, all stays the same but we replace sums with
integrals
I Simplifications due to distributive law remain valid
I Caching of results remains valid

I In special cases, integral can be computed in closed form (e.g.
Gaussian family)

I If not: need for approximations (see later)
I Approximations are also needed for discrete random variables

when K is large.

PMR 2023 24 / 79

Program

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states for factor trees

PMR 2023 25 / 79

Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Message passing for factor trees (sum-product algorithm)
The rules for sum-product message passing
Illustrating message passing on an example factor tree

3. Inference of most probable states for factor trees

PMR 2023 26 / 79

Factor trees

I We next consider the class of models (pmfs/pdfs) for which
the factor graph is a tree.

I Tree: graph where there is only one path connecting any two
nodes (no loops!)

I Chain is an example of a factor tree. (see later: inference for HMMs)

I Useful property: the factor tree obtained after summing out a
leaf variable is still a factor tree.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

PMR 2023 27 / 79

Message passing for factor trees (sum-product algorithm)

I Computation can be organized to pass messages from the
leaves of the tree to a root node

I Root can be chosen as xi , the variable for we wish to compute
the marginal

I Messages are passed:
I From a factor to a variable µφ→x (x)
I From a variable to a factor µx→φ(x)

I A factor or variable can update pass its message once it has
received all incoming messages

PMR 2023 28 / 79

Rules of message passing: initialisation

Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

I From a leaf variable node x to a factor node φ, the message
µx→φ(x) = 1.

I From a leaf factor node φ to a variable node x , the message
µφ→x (x) = φ(x).

PMR 2023 29 / 79

Rules of message passing: factor to variable messages
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let x1, . . . , xj be the neighbours of factor node φ, without variable x .

µφ→x (x) =
∑

x1,...,xj

φ(x1, . . . , xj , x)
j∏

i=1
µxi→φ(xi)

x1

x2

x3

φ
x

−→

−→

−→

−→

Rule corresponds to eliminating variables x1, . . . , xj

This is the sum-product operation
PMR 2023 30 / 79

Rules of message passing: variable to factor messages
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let φ1, . . . , φj be the neighbours of variable node x , without factor φ.

µx→φ(x) =
j∏

i=1
µφi→x (x)

φ1

φ2

φ3

x
φ

−→

−→

−→

−→

Rule corresponds to simplifying the factorisation by multiplying effective
factors defined on the same domain.

PMR 2023 31 / 79

Rules of message passing: univariate marginals
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let φ1, . . . , φj be all neighbours of variable node x .

p(x) = 1
Z

j∏
i=1

µφi→x (x) Z =
∑

x

∏
i
µφi→x (x)

φ1

φ2

φ3

x
φ4

−→

−→

−→

←−

Note: The normalising constant Z can be computed for any of the
marginals. Same as the normaliser for p(x1, . . . , xd) ∝

∏
i φi(Xi).

PMR 2023 32 / 79

Illustrating message passing on an example factor tree

Task: Compute p(x1) for

p(x1, . . . , x5) ∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φE (x3, x5)φF (x5)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

PMR 2023 33 / 79

Sum out leaf-variable x5
Task: Compute p(x1)

p(x1, . . . , x4) =
∑

x5

p(x1, . . . , x5)

∝
∑

x5

φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φE (x3, x5)φF (x5)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)
∑

x5

φE (x3, x5)φF (x5)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φ̃5(x3)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

φ̃5

PMR 2023 34 / 79

Visualising the computation

Graph with transformed factors:

φA
x1

φC

x2

φB

x3

φD
x4

φ̃5

Graph with “messages”:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF←

← ←

PMR 2023 35 / 79

Visualising the computation

Graph with “messages”:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF←

← ←

Messages:

µφF→x5(x5) = φF (x5) (initialisation)
µx5→φE (x5) = µφF→x5(x5) = φF (x5)
µφE→x3(x3) =

∑
x5

φE (x3, x5)µx5→φE (x5) =
∑

x5

φE (x3, x5)φF (x5) = φ̃5(x3)

PMR 2023 36 / 79

Sum out leaf-variable x4
Task: Compute p(x1)

p(x1, . . . , x3) =
∑

x4

p(x1, . . . , x4)

∝
∑

x4

φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)φ̃5(x3)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃5(x3)
∑

x4

φD(x3, x4)

∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃5(x3)φ̃4(x3)

φA
x1

φC

x2

φB

x3
φ̃5

φD
x4

φ̃4

PMR 2023 37 / 79

Visualising the computation

Graph with transformed factors:

φA
x1

φC

x2

φB

x3
φ̃5

φ̃4

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

←
←

←

← ←

PMR 2023 38 / 79

Visualising the computation

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

←
←

←

← ←

Messages:

µx4→φD (x4) = 1 (initialisation)
µφD→x3 =

∑
x4

φD(x3, x4)µx4→φD (x4) =
∑

x4

φD(x3, x4) = φ̃4(x3)

PMR 2023 39 / 79

Sum out both x2 and x3

p(x1, . . . , x3) ∝ φA(x1)φB(x2)φC (x1, x2, x3)φ̃5(x3)φ̃4(x3)
p(x1) ∝ φA(x1)

∑
x2,x3

φC (x1, x2, x3)φB(x2)φ̃4(x3)φ̃5(x3)

∝ φA(x1)φ̃5432(x1)

Hence

p(x1) = φA(x1)φ̃5432(x1)∑
x ′1 φA(x ′1)φ̃5432(x ′1)

PMR 2023 40 / 79

Visualising the computation

Graph with transformed factors:

φA
x1

φ̃5432

Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF
→ ←

↓

↓

←

←
←

←

← ←

PMR 2023 41 / 79

Visualising the computation
Graph with messages:

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF
→ ←

↓

↓

←

←
←

←

← ←

Messages:
µφB→x2(x2) = φB(x2) (initialisation)
µx2→φC (x2) = µφB→x2(x2) = φB(x2)
µx3→φC (x3) = µφD→x3(x3)µφE→x3(x3) = φ̃4(x3)φ̃5(x3)
µφC→x1(x1) = φ̃5432(x1) =

∑
x2,x3

φC (x1, x2, x3)µx2→φC (x2)µx3→φC (x3)

=
∑
x2,x3

φC (x1, x2, x3)φB(x2)φ̃4(x3)φ̃5(x3)

µφA→x1(x1) = φA(x1) (initialisation)
PMR 2023 42 / 79

Single marginal from messages

We have seen that

p(x1) ∝ φA(x1)φ̃5432(x1)
∝ µφA→x1(x1)µφC→x1(x1)

Marginal is proportional to the product of the incoming messages.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
↓

↓

←

←
←

←

← ←

PMR 2023 43 / 79

Single marginal from messages
Cost (due to properties of variable elimination):
I Linear in number of variables d , exponential in maximal number of

variables attached to a factor node.
(cost known upfront since no new factors are created unlike in the general case
considered before)

I Recycling: most messages do not depend on x1 and can be re-used
for computing p(x1) for any value of x1 (as well as for computing
the marginal distribution of other variables, see next slides)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
↓

↓

←

←
←

←

← ←
PMR 2023 44 / 79

Further marginals from messages

I We have seen that

p(x1) ∝ φA(x1)φ̃5432(x1)
∝ µφA→x1(x1)µφC→x1(x1)

I Remember: Messages are effective factors
φA

x1
φ̃5432

=
µφA→x1

x1
µφc→x1

I This correspondence allows us to write down the marginal for
other variables too. The incoming messages are all we need.

PMR 2023 45 / 79

Further marginals from messages
I Example: For p(x2) we need µφB→x2 and µφC→x2

I µφB→x2 is known but µφC→x2 needs to be computed
I µφC→x2 is the effective factor for x2 if all variables of the

subtrees attached to φc are eliminated.
I Can be computed from previously computed factors:

µφA→x1 and µx3→φC

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
↓ ↑

↓

←

←
←

←

← ←

PMR 2023 46 / 79

Further marginals from messages
I By definition of the messages, and their correspondence to

effective factors, we have
p(x1, x2, x3) ∝ φC (x1, x2, x3)µφA→x1(x1)µφB→x2(x2)µx3→φC (x3)

I Eliminating x1 and x3 gives
p(x2) ∝ µφB→x2(x2)

∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µφA→x1(x1)︸ ︷︷ ︸
µφC→x2 (x2)

∝ µφB→x2(x2)µφC→x2(x2)

µφA→x1
x1

x2

µφB→x2

x3
φC

µx3→φc↑

↓

x2

µφB→x2

µφc→x2

PMR 2023 47 / 79

Further marginals from messages
We had

µφC→x2(x2) =
∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µφA→x1(x1)

Introducing variable to factor message µx1→φc = µφA→x1 = φA

µφC→x2(x2) =
∑
x1,x3

φc(x1, x2, x3)µx3→φC (x3)µx1→φc (x1)

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
→ ↓ ↑

↓

←

←
←

←

← ←

PMR 2023 48 / 79

All (univariate) marginals from messages

I We can use the messages to compute the marginals of all
variables in the graph.

I For the marginal of a variable x we need to know the incoming
messages µφi→x from all factor nodes φi connected to x .

I Achieve by passing messages to root, and then from root
I This means that if each edge has a message in both directions,

we can compute the marginals of all variables in the graph.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←

→
←
↓ ↑

↓ ↑

→
←

→
← →

←

→
← →

←
→
←

PMR 2023 49 / 79

Joint distributions from messages

I The correspondence between messages and effective factors
allows us to find the joint distribution for variables
connected to the same factor node (neighbours).

I For example, we can compute p(x3, x5) from messages
I The messages µx3→φE and µx5→φE correspond to effective

factors attached to x3 and x5, respectively.

µx3→φE x3
φE

x5 µx5→φE

I Factor graph corresponds to

p(x3, x5) ∝ φE (x3, x5)µx3→φE (x3)µx5→φE (x5)

PMR 2023 50 / 79

Rules of message passing: joint marginals

Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let x1, . . . , xj be all neighbours of factor node φ.

p(x1, . . . , xj) = 1
Z φ(x1, . . . , xj)

j∏
i=1

µxi→φ(xi)

x1

x2

x3

φ
x4

−→

−→

−→

←−

PMR 2023 51 / 79

Computing conditionals with message passing

I As in the variable elimination section, we redefine the
potentials to take into account evidential variables xe

I This can be viewed as defining a new factor graph on the
non-evidential variables

I Or, one can keep the original factor graph, but for
factor-to-variable messages, the sum is only taken over
non-evidential variables; any evidential variables in the
potential are set to their evidential states

PMR 2023 52 / 79

A word about numerics
I In practice, it is better to work in the log-domain.
I Log of products of messages −→ sums of log-messages.
I For factor-to-variable messages, we need the log-sum-exp

trick:

logµφ→x (x) = log

 ∑
x1,...,xj

φ(x1, . . . , xj , x)
j∏

i=1
µxi→φ(xi)


With λi(xi) = logµxi→φ(xi), introduce ω(x1, . . . , xj , x),

ω(x1, . . . , xj , x) = log φ(x1, . . . , xj , x) + log
j∏

i=1
µxi→φ(xi)

= log φ(x1, . . . , xj , x) +
j∑

i=1
λi(xi).

Depends on x1, . . . , xj and x (assumed fixed here). This gives

logµφ→x (x) = log
(∑

x1,...,xj

exp (ω(x1, . . . , xj , x))
)

PMR 2023 53 / 79

A word about numerics
I We had

logµφ→x (x) = log
(∑

x1,...,xj

exp(ω(x1, . . . , xj , x))
)

I Sum goes over all possible values of x1, . . . , xj . If the
ω(x1, . . . , xj , x) are very large or small, we have numerical
overflow/underflow problems.

I Introduce ω∗(x) = maxx1,...,xj ω(x1, . . . , xj , x) so that

logµφ→x (x) = log
∑

x1,...,xj

exp(ω∗(x)) exp(ω(x1, . . . , xj , x)− ω∗(x))

= log
(

exp(ω∗(x))
∑

x1,...,xj

exp(ω(x1, . . . , xj , x)− ω∗(x))
)

= ω∗(x) + log
(∑

x1,...,xj

exp(ω(x1, . . . , xj , x)− ω∗(x))
)

I Numerically stable because exp(ω(x1, . . . , xj , x)−ω∗(x)) ≤ 1 .
PMR 2023 54 / 79

Other names for the sum-product algorithm

I Other names for the sum-product algorithm include
I sum-product message passing
I message passing
I belief propagation

I Whatever the name: it is variable elimination applied to factor
trees

PMR 2023 55 / 79

Key advantages of the sum-product algorithm

Assume p(x1, . . . , xd) ∝ ∏m
i=1 φi(Xi), with Xi ⊆ {x1, . . . , xd}, can

be represented as a factor tree.
I The sum-product algorithm allows us to compute

I all univariate marginals p(xi).
I all joint distributions p(Xi) for the variables Xi that are part of

the same factor φi .
I Cost: If variables can take maximally K values and there are

maximally M elements in the Xi : O(2dKM) = O(dKM)

PMR 2023 56 / 79

Applicability of the sum-product algorithm

I Factor graph must be a tree
I Can be used to compute conditionals (same argument as for

variable elimination)
I May be used for continuous random variables (same caveats

as for variable elimination)

PMR 2023 57 / 79

If the factor graph is not a tree

I Use variable elimination
I Group variables together so that the factor graph becomes a

tree (for details, see e.g. Chapter 6 in Barber; not examinable)
I Pretend the factor graph is a tree and use message passing

(loopy belief propagation; not examinable)
I Can you condition on some variables so that the conditional is

a tree? Message passing can then be used to solve part of the
inference problem.
Example: p(x1, x2, x3, x4) is not a tree but p(x1, x2, x3|x4) is.
Use law of total probability

p(x1) =
∑
x4

∑
x2,x3

p(x1, x2, x3|x4)︸ ︷︷ ︸
by message passing

p(x4)

(see Barber Section 5.3.2, “Loop-cut conditioning”; not examinable)
PMR 2023 58 / 79

Summary

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Message passing for factor trees (sum-product algorithm)
The rules for sum-product message passing
Illustrating message passing on an example factor tree

PMR 2023 59 / 79

Summary

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous

random variables

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Message passing for factor trees (sum-product algorithm)
The rules for sum-product message passing
Illustrating message passing on an example factor tree

PMR 2023 60 / 79

Program

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states for factor trees
Maximisers of the marginals 6= maximiser of joint
We can exploit the factorisation (in the log-domain) using

the distributive law max(u + v , u + w) = u + max(v ,w)
Max-sum message passing

PMR 2023 61 / 79

Other inference tasks

I So far: given a joint distribution p(x), find marginals or
conditionals over variables

I Other common inference tasks:
I Find a setting of the variables that maximises p(x), i.e.

x̂ = argmax
x

p(x) = argmax
x

log p(x)

I Find the corresponding value maximal value of p(x), i.e.

pmax = p(x̂) = max
x

p(x) or

log pmax = log p(x̂) = max
x

log p(x)

I Note: the task includes argmaxx p̃(x|yo), which is known as
maximum a-posteriori (MAP) estimation or inference.

PMR 2023 62 / 79

Maximisers of the marginals 6= maximiser of joint

I The sum-product algorithm gives us the univariate marginals
p(xi) for all variables x1, . . . , xd .

I But the vector with the argmaxxi p(xi), x1, . . . , xd , is not the
same as argmaxx p(x)

I Example (Bishop Table 8.1):

x1 x2 p(x1, x2)
0 0 0.3
1 0 0.4
0 1 0.3
1 1 0.0

x1 p(x1)
0 0.6
1 0.4

x2 p(x2)
0 0.7
1 0.3

PMR 2023 63 / 79

Distributive law to exploit the factorisation

I With the sum-product algorithm, we could compute the
marginal p(x) for any x by summing out all other variables
and exploiting the factorisation.

I Let us consider the case where xd is the target variable

p(xd) =
∑

x1,...,xd−1

p(x) (16)

= 1
Z

∑
x1,...,xd−1

m∏
i=1

φi(Xi) (17)

I For the max problem, we have pmax = maxxd η
∗(xd)

η∗(xd) = max
x1,...,xd−1

p(x) (18)

= 1
Z max

x1,...,xd−1

m∏
i=1

φi(Xi) (19)

PMR 2023 64 / 79

Max-product algorithm

I The problem has the same structure with the correspondence∑
x1,...,xd−1

−→ max
x1,...,xd−1

I To compute p(xd), we relied on the distributive law

ab + ac = a(b + c)
sum(ab, ac) = a sum(b, c)

I To compute η∗(xd), we can use the distributive law

max(ab, ac) = a max(b, c)

I Message passing algorithm by replacing “sum” with “max”.
Gives max-product algorithm.

PMR 2023 65 / 79

Work in the log-domain

I Let us work in the log-domain for numerical stability.
I Consider again

p(xd) =
∑

x1,...,xd−1

p(x) (20)

= 1
Z

∑
x1,...,xd−1

m∏
i=1

φi(Xi) (21)

I Max problem in the log-domain: log pmax = maxxd γ
∗(xd)

γ∗(xd) = max
x1,...,xd−1

log p(x) (22)

= − log Z + max
x1,...,xd−1

m∑
i=1

log φi(Xi) (23)

PMR 2023 66 / 79

Work in the log-domain

I The problem has the same structure with the correspondence

∑
x1,...,xd−1

−→ max
x1,...,xd−1

,
m∏

i=1
−→

m∑
i=1
, φi(Xi) −→ log φi(Xi)

I To compute p(xd), we relied on the distributive law

ab + ac = a(b + c)
sum(ab, ac) = a sum(b, c)

I To compute γ∗(xd), we can use the distributive law

max(log a + log b, log a + log c) = log a + max(log b, log c)

I Message passing algorithm by replacing sum with max,
products with sums, and factors with log-factors.

PMR 2023 67 / 79

Sum-product algorithm with xd as root (recap)
Factor to variable x1

x2

φ
x

−→

−→

−→µφ→x (x) = ∑
x1,...,xj φ(x1, . . . , xj , x)∏j

i=1 µxi→φ(xi)
where {x1, . . . , xj} = ne(φ) \ {x}

Variable to factor φ1

φ2

x
φ

−→

−→

−→µx→φ(x) = ∏j
i=1 µφi→x (x)

where {φ1, . . . , φj} = ne(x) \ {φ}

Univariate marginal φ1

φ2

xd

φ3
−→

−→

←−p(xd) = 1
Z
∏j

i=1 µφi→xd (xd)
Z = ∑

xd

∏j
i=1 µφi→xd (xd)

where {φ1, . . . , φj} = ne(xd)

Initialisation
At leaf variable nodes: µx→φ(x) = 1
At leaf factor nodes: µφ→x (x) = φ(x)

PMR 2023 68 / 79

Max-sum algorithm with xd as root

Factor to variable x1

x2

φ
x

−→

−→

−→γφ→x (x) = maxx1,...,xj log φ(x1, . . . , xj , x) +∑j
i=1 γxi→φ(xi)

where {x1, . . . , xj} = ne(φ) \ {x}

Variable to factor φ1

φ2

x
φ

−→

−→

−→γx→φ(x) = ∑j
i=1 γφi→x (x)

where {φ1, . . . , φj} = ne(x) \ {φ}

Maximum probability φ1

φ2

xd

φ3
−→

−→

←−γ∗(xd) = − log Z +∑j
i=1 γφi→xd (xd)

log pmax = maxxd γ
∗(xd)

where {φ1, . . . , φj} = ne(xd)

Initialisation
At leaf variable nodes: γx→φ(x) = 0
At leaf factor nodes: γφ→x (x) = log φ(x)

PMR 2023 69 / 79

Max-sum algorithm
I After computation of γ∗(xd), we obtain

log pmax = max
xd

γ∗(xd)

Result does not depend on choice of xd .
I Compute x̂ = argmaxx p(x) recursively via “backtracking”.
I When solving the optimisation problem

γφ→x (x) = max
x1,...,xj

log φ(x1, . . . , xj , x) +
j∑

i=1
γxi→φ(xi)

we also build the function (look-up table)

γ∗φ→x (x) = argmax
x1,...,xj

log φ(x1, . . . , xj , x) +
j∑

i=1
γxi→φ(xi)

which returns the maximiser (x̂1, . . . , x̂j) for each value of x .
I Start the recursion with x̂d = argmaxxd γ

∗(xd), backtrack to
the leaf variables to compute x̂.

PMR 2023 70 / 79

Example

Model (pmf):

p(x1, x2, x3, x4) ∝ φA(x1)φB(x2)φC (x1, x2, x3)φD(x3, x4)

Factor graph (tree):

φA
x1

φC

x2

φB

x3
φD

x4

Goal: (x̂1, x̂2, x̂3, x̂4) = argmaxx1,...,x4 p(x1, x2, x3, x4)

PMR 2023 71 / 79

Example

I Select root towards which we send messages. Here: x4.
I Messages that we need to send:

φA
x1

φC

x2

φB

x3
φD

x4
→ → ↓

↓

→ → →

I Initialise:

γφA→x1(x1) = log φA(x1)
γφB→x2(x2) = log φB(x2)

PMR 2023 72 / 79

Example

φA
x1

φC

x2

φB

x3
φD

x4
→ → ↓

↓

→ → →

I x1 and x2 copy the messages:

γx1→φC (x1) = γφA→x1(x1)
γx2→φC (x2) = γφB→x2(x2)

I For γφC→x3(x3) solve optimisation problem

γφC→x3(x3) = max
x1,x2

[log φC (x1, x2, x3) + γx1→φC (x1) + γx2→φC (x2)]

γ∗φC→x3(x3) = argmax
x1,x2

[log φC (x1, x2, x3) + γx1→φC (x1) + γx2→φC (x2)]

for all values of x3.
PMR 2023 73 / 79

Example

φA
x1

φC

x2

φB

x3
φD

x4
→ → ↓

↓

→ → →

I x3 copies the message:γx3→φD (x3) = γφC→x3(x3)
I For γφD→x4(x4) solve optimisation problem

γφD→x4(x4) = max
x3

[log φD(x3, x4) + γx3→φD (x3)]

γ∗φD→x4(x4) = argmax
x3

[log φD(x3, x4) + γx3→φD (x3)]

for all values of x4.

PMR 2023 74 / 79

Example

φA
x1

φC

x2

φB

x3
φD

x4
→ → ↓

↓

→ → →

I After computation of γφD→x4(x4), we obtain log pmax as

log pmax = max
xd

γ∗(xd)

γ∗(x4) = − log Z + γφD→x4(x4)

I This requires knowledge of Z . We can compute Z via the
sum-product algorithm.

I Z not needed if we are only interested in argmax p(x1, . . . , x4)

PMR 2023 75 / 79

Example

φA
x1

φC

x2

φB

x3
φD

x4
→ → ↓

↓

→ → →

Backtracking:
I Compute x̂4 = argmaxx4 γ

∗(x4) = argmaxx4 γφD→x4(x4)
I Plug x̂4 into look-up table γ∗φD→x4(x4) to look up best value of

x3:
x̂3 = γ∗φD→x4(x̂4)

I Plug x̂3 into look-up table γ∗φC→x3(x3) to look up best values
of (x1, x2):

(x̂1, x̂2) = γ∗φC→x3(x̂3)
I This gives (x̂1, x̂2, x̂3, x̂4) = argmaxx1,...,x4 p(x1, x2, x3, x4)

PMR 2023 76 / 79

Program recap

1. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law

ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous random

variables

2. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Message passing for factor trees (sum-product algorithm)
The rules for sum-product message passing
Illustrating message passing on an example factor tree

3. Inference of most probable states for factor trees
Maximisers of the marginals 6= maximiser of joint
We can exploit the factorisation (in the log-domain) using the distributive

law max(u + v , u + w) = u + max(v , w)
Max-sum message passing

PMR 2023 77 / 79

Further Reading

I Bishop secs. 8.4.3-8.4.5 covers factor trees, sum-product and
max-product inference

I Also Barber secs. 5.1, 5.2.1
I The topics are also covered in many other sources

PMR 2023 78 / 79

Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2023 CC BY 4.0 cb.

PMR 2023 79 / 79

https://creativecommons.org/licenses/by/4.0/

	Marginal inference by variable elimination
	Exploiting the factorisation by using the distributive law ab+ac=a(b+c) and by caching computations
	Variable elimination for general factor graphs
	The principles of variable elimination also apply to continuous random variables

	Marginal inference for factor trees (sum-product algorithm)
	Factor trees
	Message passing for factor trees (sum-product algorithm)
	The rules for sum-product message passing
	Illustrating message passing on an example factor tree

	Inference of most probable states for factor trees
	Maximisers of the marginals = maximiser of joint
	We can exploit the factorisation (in the log-domain) using the distributive law max(u + v, u + w) = u + max(v, w)
	Max-sum message passing

