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Recap

I Statistical independence assumptions facilitate the efficient
representation of probabilistic models by limiting the number
of variables that are allowed to directly interact with each
other.

I Visualisation of factorised pdfs/pmfs as directed acyclic
graphs (DAGs).

I DAGs to define sets of pdfs/pmfs in terms of a factorisation:
directed graphical models

I The factors correspond to conditionals of the pdf/pmf, which
defines a data generating process called ancestral sampling.
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Factorisation implies independencies
I Given a DAG G , we defined the directed graphical model to

be the set of pdfs/pmfs that factorise as

p(x1, . . . , xd) =
d∏

i=1
k(xi |pai)

for some conditional pdfs/pmfs k(xi |pai). We said that such
p(x) satisfy F (G).

I We have seen that k(xi |pai) = p(xi |pai) = p(xi |prei) for any
ordering of the variables that is topological to G .

I This means that p(x) satisfies the independencies

xi ⊥⊥ (prei \ pai) | pai for all i

This holds for all orderings of the variables that are
topological to G .

I We say that p(x) satisfies the directed ordered Markov
property relative to G , or Mo(G) in short.
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Equivalence between F (G) and Mo(G)

I We can summarise the above as F (G) =⇒ Mo(G).
I We use the chain rule to show the reverse, i.e.

Mo(G) =⇒ F (G):
I Given G , order the variables topologically to the graph
I Decompose p(x) using the chain rule

p(x) =
∏

i
p(xi |prei)

I Since p(x) satisfies Mo(G), we have p(xi |prei) = p(xi |pai) and
hence

p(x) =
∏

i
p(xi |pai)

so that p(x) satisfies F (G).
I We thus have the equivalence F (G) ⇐⇒ Mo(G).
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Two equivalent views on directed graphical models

1. Factorisation (generative) view point:
I We said the directed graphical model implied by a DAG G is

the set of pdfs/pmfs that satisfy F (G).
I It’s the set of models that you obtain by looping over all

possible factors k(xi |pai)
I In other words, it’s all the data that you can generate using

ancestral sampling with different conditionals.
2. Independence (filtering) view point:

I Equivalently, we can say that the directed graphical model
implied by a DAG G is the set of pdfs/pmfs that satisfy
Mo(G).

I It’s the set of models that you obtain by filtering out from all
possible models those that satisfy Mo(G).

I In other words, it’s all the data for which Mo(G) holds.
(Similarly for further Markov properties that we will derive, the directed
global Markov property Mg (G) and the directed local Markov property
Ml (G).)
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Example
DAG:

a z

q

e

h

Topological ordering: (a, z , q, e, h)
Predecessor sets for the ordering:
prea = ∅, prez = {a}, preq = {a, z}, pree = {a, z , q}, preh = {a, z , q, e}
Parent sets
paa = paz = ∅, paq = {a, z}, pae = {q}, pah = {z}
All models defined by the DAG satisfy xi ⊥⊥ (prei \ pai) | pai :

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z
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Example (different topological ordering)
DAG:

a z

q

e

h

Topological ordering: (a, z , h, q, e)
Predecessor sets for the ordering:
prea = ∅, prez = {a}, preh = {a, z}, preq = {a, z , h}, pree = {a, z , h, q}
Parent sets: as before
paa = paz = ∅, pah = {z}, paq = {a, z},pae = {q}
All models defined by the DAG satisfy xi ⊥⊥ (prei \ pai) | pai :

z ⊥⊥ a h ⊥⊥ a | z q ⊥⊥ h | a, z e ⊥⊥ {a, z , h} | q
Note: the models also satisfy those obtained with the previous ordering:

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z
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Example: Markov chain

DAG:

x1 x2 x3 x4 x5

There is only one topological ordering: (x1, x2, . . . , x5)
All models defined by the DAG satisfy: xi+1 ⊥⊥ x1, . . . , xi−1 | xi

(future independent of the past given the present)
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Example: Probabilistic PCA, factor analysis, ICA
(PCA: principal component analysis; ICA: independent component analysis)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

Topological ordering (x1, x2, x3, y1, y2, y3, y4, y5)
All models defined by the DAG satisfy:
xi ⊥⊥ xj y2 ⊥⊥ y1 | x1, x2, x3 y3 ⊥⊥ y1, y2 | x1, x2, x3
y4 ⊥⊥ y1, y2, y3 | x1, x2, x3 y5 ⊥⊥ y1, y2, y3, y4|x1, x2, x3

y5 is independent from all the other yi given x1, x2, x3. Using
further topological orderings shows that all yi are independent
from each other given x1, x2, x3.
(Marginally the yi are not independent. The model explains possible dependencies
between (observed) yi through fewer (unobserved) xi , see later.)

PMR 2023 11 / 43



Remarks

I By using different topological orderings you can generate
possibly different independence relations satisfied by the
model.

I While they imply each other, deriving them from each other
from the basic definition of independence may not be
straightforward.

I Missing edges in a DAG cause the pai to be smaller than the
prei , and thus lead to the independencies xi ⊥⊥ prei \pai | pai .

I Instead of “directed ordered Markov property”, we may just
say “ordered Markov property” if it is clear that we are talking
about DAGs.
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Further independence relations

I Given the DAG below, what can we say about the
independencies for the set of probability distributions that
factorise over the graph?

I Is x1 ⊥⊥ x2? x1 ⊥⊥ x2 | x6? x2 ⊥⊥ x3 | {x1, x4}?
I Ordered Markov properties give some independencies.
I Limitation: it only allows us to condition on parent sets.
I Directed separation (d-separation) gives further

independencies.

x1

x2

x3

x4

x5

x6
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Three canonical connections in a DAG

In a DAG, two nodes x , y can be connected via a third node z in
three ways:
1. Serial connection (chain, head-tail or tail-head)

x z y

2. Diverging connection (fork, tail-tail)

x z y

3. Converging connection (collider, head-head, v-structure)

x z y

Note: in any case, the sequence x , z , y forms a trail
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Independencies for the three canonical connections

(Derived in the exercises)

Connection p(x , y) p(x , y |z) z node
x z y x 6⊥⊥ y x ⊥⊥ y | z default: open

instantiated: closed
x z y x 6⊥⊥ y x ⊥⊥ y | z default: open

instantiated: closed
x z y x ⊥⊥ y x 6⊥⊥ y | z default: closed

with evidence: opens

Think of the z node as a valve or gate through which evidence
(probability mass) can flow. Depending on the type of the connection,
it’s default state is either open or closed. Instantiation/evidence acts as a
switch on the valve.



Colliders model “explaining away”
Example: cpu power

pc

I One day your computer does not start and you bring it to a
repair shop. You think the issue could be the power unit or
the cpu.

I Investigating the power unit shows that it is damaged. Is the
cpu fine?

I Without further information, finding out that the power unit is
damaged typically reduces our belief that the cpu is damaged

power 6⊥⊥ cpu | pc
I Finding out about the damage to the power unit explains

away the observed start-issues of the computer.
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D-separation

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zr} be
three disjoint sets of nodes in the graph. Assume all zi are
observed (instantiated).
I Two nodes xi and yj are said to be d-separated by Z if all

trails between them are blocked by Z .
I The sets X and Y are said to be d-separated by Z if every trail

from any variable in X to any variable in Y is blocked by Z .
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D-separation

A trail between nodes x and y is blocked by Z if there is a node b
on the trail such that
1. either b is part of a head-tail or tail-tail connection along the

trail and b is in Z ,
x b y x b y

2. or b is part of a head-head (collider) connection along the
trail and neither b nor any of its descendants are in Z .

x b y

It’s like treating a segment of the trail as a canonical connection.
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D-separation and conditional independence

Theorem: If X and Y are d-separated by Z
then X ⊥⊥ Y | Z for all probability distributions that factorise over
the DAG.

For those interested: A proof can be found in Section 2.8 of Bayesian Networks
– An Introduction by Koski and Noble (not examinable)

Important because:
1. the theorem allows us to read off (conditional) independencies

from the graph
2. no restriction on the sets X ,Y ,Z
3. the theorem shows that statistical independencies detected by

d-separation, which is purely a graph-based criterion, do
always hold. They are “true positives” (“soundness of
d-separation”).
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Directed global Markov property Mg(G)

I Distributions p(x) are said to satisfy the directed global
Markov property with respect to the DAG G , or Mg(G), if for
any triple X ,Y ,Z of disjoint subsets of nodes such that X
and Y are d-separated by Z in G , we have X ⊥⊥ Y |Z .

I Global Markov property because we do not restrict the sets
X ,Y ,Z .

I The theorem says that F (G) =⇒ Mg(G).
I We thus have so far Mo(G) ⇐⇒ F (G) =⇒ Mg(G).
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What if two sets of nodes are not d-separated?

Theorem: If X and Y are not d-separated by Z
then X 6⊥⊥ Y | Z in some probability distributions that factorise
over the DAG.

For those interested: A proof sketch can be found in Section 3.3.1 of
Probabilistic Graphical Models by Koller and Friedman (not examinable).

“not d-separated” is also called “d-connected”
6⊥⊥ means statistically dependent
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What if two sets of nodes are not d-separated?

I However, it can also be that d-connected variables are
independent for some distributions that factorise over the
graph.

I Example (Koller, Example 3.3): p(x , y) with x , y ∈ {0, 1} and

p(y = 0|x = 0) = a p(y = 0|x = 1) = a

for a > 0 and some non-zero p(x = 0).
I Graph has arrow from x to y . Variables are not d-separated.

x y

I p(y = 0) = ap(x = 0) + ap(x = 1) = a,
which is p(y = 0|x) for all x .

I p(y = 1) = (1− a)p(x = 0) + (1− a)p(x = 1) = 1− a,
which is p(y = 1|x) for all x .

I Hence: p(y |x) = p(y) so that x ⊥⊥ y .
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D-separation is not complete

I This means that d-separation does generally not reveal all
independencies in all probability distributions that factorise
over the graph.

I In other words, individual probability distributions that
factorise over the graph may have further independencies not
included in the set obtained by d-separation. This is because
the graph criteria do not operate on the numerical values of
the factors but only on “whom affects whom”, i.e. the
parent-children relationships.

I We say that d-separation is not “complete” (“recall-rate” is
not guaranteed to be 100%).
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Recipe to determine whether two nodes are d-separated

1. Determine all trails between x and y (note: direction of the
arrows does here not matter).

2. For each trail:
i Determine the default state of all nodes on the trail.

I open if part of a head-tail or a tail-tail connection
I closed if part of a head-head connection

ii Check whether the set of observed nodes Z switches the state
of the nodes on the trail.

iii The trail is blocked if it contains a closed node.
3. The nodes x and y are d-separated if all trails between them

are blocked.

PMR 2023 26 / 43



Example: Are x1 and x2 d-separated?

Follows from ordered Markov property, but let us answer it with d-separation.
1. Determine all trails between x1

and x2
2. For trail x1, x4, x2

i default state
ii conditioning set is empty
iii ⇒ Trail is blocked

For trail x1, x3, x5, x4, x2
i default state
ii conditioning set is empty
iii ⇒ Trail is blocked

Trail x1, x3, x5, x6, x4, x2 is
blocked too (same arguments).

3. ⇒ x1 and x2 are d-separated.

x1

x2

x3

x4

x5

x6

closed

open

closed

open

x1 ⊥⊥ x2 for all probabil-
ity distributions that factor-
ise over the graph.
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Example: Are x1 and x2 d-separated by x6?

1. Determine all trails between x1
and x2

2. For trail x1, x4, x2
i default state
ii influence of x6
iii ⇒ Trail not blocked

No need to check the other
trails: x1 and x2 are not
d-separated by x6

x1

x2

x3

x4

x5

x6

closedopened by x6

x1 ⊥⊥ x2 | x6 does not hold
for all probability distribu-
tions that factorise over the
graph.
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Example: Are x2 and x3 d-separated by x1 and x4?

1. Determine all trails between x2
and x3

2. For trail x3, x1, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked

For trail x3, x5, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked

Trail x3, x5, x6, x4, x2 is blocked
too (same arguments).

3. ⇒ x2 and x3 are d-separated by
x1 and x4.

x1

x2

x3

x4

x5

x6

open

closed

closed

open

closed

open

closed

closed

x2 ⊥⊥ x3 | {x1, x4} for all
probability distributions that
factorise over the graph.
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Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

I From ordered Markov property: e.g.
y5 ⊥⊥ y1, y2, y3, y4|x1, x2, x3.

I Via d-separation: yi 6⊥⊥ yk since the x are in a tail-tail
connection with the y ’s.

I Via d-separation: xi ⊥⊥ xj since all trails between them go
through y ’s that are in a collider configuration.

I Via d-separation: xi 6⊥⊥ xj | yk for any i , j , k, (i 6= j). This is
the “explaining away” phenomenon.
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Directed local Markov property

I The independencies that you can obtain with the ordered
Markov property depend on the topological ordering chosen.

I We next introduce the “directed local Markov property” that
does not depend on the ordering but only on the graph.

I We say that p(x) satisfies the directed local Markov property,
Ml(G) with respect to DAG G if

xi ⊥⊥ (nondesc(xi) \ pai) | pai

holds for all i , where pai denotes the parents and nondesc(xi)
the non-descendants of xi .

I In other words, p(x) satisfying the directed local Markov
property means that

p(xi |nondesc(xi)) = p(xi |pai) for all i
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Directed local Markov property

I We now show that Mo(G) ⇐⇒ Ml(G) for any DAG G .
I In words: If p(x) satisfies the ordered Markov property it also

satisfies the directed local Markov property and vice versa:

xi ⊥⊥ (prei \ pai) |pai ⇐⇒ xi ⊥⊥ (nondesc(xi) \ pai) |pai

xi ≡ x7
pa7 = {x4, x5, x6}

pre7 = {x1, x2, . . . , x6}
nondesc(x7) in blue

x1 x2

x4

x5
x6

x8 x7 x9
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Directed local Markov property
xi ⊥⊥ prei \ pai |pai ⇐ xi ⊥⊥ nondesc(xi) \ pai |pai follows because
(1) {x1, . . . , xi−1} ⊆ nondesc(xi) for all topological orderings, and
(2) x ⊥⊥ {y ,w} | z implies that x ⊥⊥ y | z and x ⊥⊥ w | z .
For ⇒ , assume p(x) follows the ordered Markov property. It then
factorises over the graph and hence satisfies Mg (G), and we can use
d-separation to establish independence.
Consider all trails from xi to {nondesc(xi) \ pai}.
Two cases: move upwards or downwards:

(1) upward trails are blocked by the parents
(2) downward trails must contain a head-
head (collider) connection because the xj ∈
{nondesc(xi) \ pai} is a non-descendant.
These paths are blocked because the collider
node or its descendants are never part of pai .

x1 x2

x4

x5
x6

x8 x7 x9

The result follows because all paths from xi to all elements
in {nondesc(xi) \ pai} are blocked.
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Equivalences so far

I For a DAG G , we have established the following relationships:

Mg(G)⇐= F (G) ⇐⇒ Mo(G) ⇐⇒ Ml(G)

I We can close the loop by showing that Mg(G) =⇒ Ml(G).
I If p(x) satisfies Mg(G) we can use d-separation to read our

dependencies.
I The same reasoning as in the second part of the previous

proof thus shows that xi ⊥⊥ (nondesc(xi) \ pai) | pai holds.
I Hence Mg(G) =⇒ Ml(G) and thus:

Mg(G) ⇐⇒ F (G) ⇐⇒ Mo(G) ⇐⇒ Ml(G)
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Summary of the equivalences

For a DAG G with nodes (random variables) xi and parent sets pai , we
have the following equivalences:

p(x) satisfies F (G) p(x) =
∏d

i=1 k(xi |pai )
m

p(x) satisfies Mo(G) xi ⊥⊥ (prei \ pai ) | pai for all i and any topol. ordering
m

p(x) satisfies Ml(G) xi ⊥⊥ (nondesc(xi ) \ pai ) | pai for all i
m

p(x) satisfies Mg (G) independencies asserted by d-separation

F : factorisation property, Mo : directed ordered MP, Ml : directed local MP,
Mg : directed global MP (MP: Markov property)

Broadly speaking, the graph serves two related purposes:
1. it tells us how distributions factorise
2. it represents the independence assumptions made
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What can we do with the equivalences?

The main things that we have covered:
I If we know the factorisation of a p(x) in terms of conditional

pdfs/pmfs, we can build a graph G such that p(x) satisfies
F (G) and then use the graph to determine independencies
that p(x) satisfies.

I Similarly, if for some ordering of the random variables, we
know the independencies xi ⊥⊥ (prei \ πi) | πi that p(x)
satisfies, where πi is a minimal subset of the predecessors, we
can obtain a graph G by identifying the πi with the parents
pai in a graph. By construction, p(x) satisfies Mo(G). From
the graph we can obtain the factorisation of p(x) and further
independencies.

I We can start with the graph and check which independencies
it implies, and, when happy, define a set of pdfs/pdfs that all
satisfy the specified independencies.
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What can we do with the equivalences?

What we haven’t covered:
I How to determine a graph G from an arbitrary set of

independencies
I How to learn the graph from samples from p(x) (structure

learning)
I These are difficult topics:

I Multiple DAGs may express the same independencies and there
may be no DAG that expresses all desired independencies (see
later)

I Learning the graph from samples involves independence tests
which are not 100% accurate and errors propagate and may
change the structure of the resulting DAG.

I Areas of active research, in particular in the field of causality.
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Markov blanket
What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From d-separation:
I Isolate x from its

ancestors
⇒ condition on parents

I Isolate x from its
descendants
⇒ condition on children

I Deal with collider
connection
⇒ condition on
co-parents
(other parents of the
children of x)

x

In directed graphical models, the par-
ents, children, and co-parents of x are
called its Markov blanket, denoted by
MB(x). We have
x ⊥⊥ {all vars \ x \ MB(x)} | MB(x).
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Further Reading

General material on DGMs and d-separation is covered in:
I Bishop (2006) secs. 8.1 and 8.2
I Barber (2012) secs. 3.1 and 3.3
I ... and many other sources

The details of the directed ordered Markov property, the directed
local Markov property and the directed global Markov property are
less widely available in the standard textbooks, and your are
recommended to study the slides (by MG) on this topic
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2023 CC BY 4.0 cb.
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