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Recap

I We talked about reasonably weak assumption to facilitate the
efficient representation of a probabilistic model

I Independence assumptions reduce the number of interacting
variables, e.g.
I p(x, y, z) = p(x)p(y)p(z)
I p(x1, . . . , xd) = p(xd |xd−3, xd−2, xd−1)p(x1, . . . , xd−1)

I Parametric assumptions restrict the way the variables may
interact.
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Chain rule
Iteratively applying the product rule allows us to factorise any joint pdf
(pmf) p(x) = p(x1, x2, . . . , xd) into product of conditional pdfs.

p(x) = p(x1)p(x2, . . . , xd |x1)
= p(x1)p(x2|x1)p(x3, . . . , xd |x1, x2)
= p(x1)p(x2|x1)p(x3|x1, x2)p(x4, . . . , xd |x1, x2, x3)
...
= p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd |x1, . . . xd−1)

= p(x1)
d∏

i=2
p(xi |x1, . . . , xi−1)

=
d∏

i=1
p(xi |prei)

with prei = pre(xi) = {x1, . . . , xi−1}, pre1 = ∅ and p(x1|∅) = p(x1)
The chain rule can be applied to any ordering xk1 , . . . xkd . Different
orderings give different factorisations.
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Conditional independencies simplify the factors
I Given: a pdf/pmf that factorises as p(x) = ∏d

i=1 p(xi |prei) for
the ordering x1, . . . , xd .

I For each xi , we condition on all previous variables in the
ordering.

I Assume that, for each i , there is a minimal subset of variables
πi ⊆ prei such that p(x) satisfies

xi ⊥⊥ (prei \ πi) | πi

for all i .
I By definition of conditional independence:

p(xi |x1, . . . , xi−1) = p(xi |prei) = p(xi |πi)
I With the convention π1 = ∅, we obtain the factorisation

p(x1, . . . , xd) =
d∏

i=1
p(xi |πi)
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Why does it matter?

I Denote the predecessors of xi in the ordering by
prei = {x1, . . . , xi−1}, and let πi ⊆ prei .

xi ⊥⊥ (prei \ πi) | πi for all =⇒ p(x) =
d∏

i=1
p(xi |πi)

I What’s the point?
1. p(xi |πi) involve fewer interacting variables than p(xi |prei).

I Makes them easier to model.
I If specified as a table, fewer numbers are needed for their

representation (computational advantage).
2. We can visualise the interactions between the variables with a

graph.
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Visualisation as a directed graph

Assume p(x) = ∏d
i=1 p(xi |πi) with πi ⊆ prei . We visualise the

model as a graph with the random variables xi as nodes, and
directed edges that point from the xj ∈ πi to the xi . This results in
a directed acyclic graph (DAG).
Example:

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

x1 x2

x3

x4

x5
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Visualisation as a directed graph

Example:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

x1 x2

x3

x4

Factorisation obtained by chain rule ≡ fully connected directed
acyclic graph.
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Example: Car start belief network

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0
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I Unstructured joint distribution requires 25 − 1 = 31 numbers
to specify it. Here can use 12 numbers

I Take the ordering b, f , g , t, s. Joint can be expressed as

p(b, f , g , t, s) = p(b)p(f |b)p(g |b, f )p(t|b, f , g)p(s|b, f , g , t)

I Conditional independences (missing links) give

p(b, f , g , t, s) = p(b)p(f )p(g |b, f )p(t|b)p(s|t, f )
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Example: Car start belief network

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

What is probability of
p(b = good , t = no, g = empty , f = not empty , s = no)?
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Example: Linear-Gaussian networks

I Let the x ’s be real-valued

p(xi |πi) = N(xi |wT
i xπi + bi , σ

2
i )

I p(x) is jointly Gaussian
I Exact inference can be carried out

(i) by first constructing the joint and conditioning, or
(ii) by exploiting the graphical structure

I Example: factor analysis (see later)
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Constructing belief networks

1. Choose a relevant set of variables {xi} that describe the
domain

2. Choose an ordering for the variables
3. While there are variables left

(a) Pick a variable xi and add it to the network
(b) Set Parents(xi) to some minimal set of nodes

already in the net
(c) Define the conditional probability table for xi
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I This procedure is guaranteed to produce a DAG
I To ensure maximum sparsity, add “root causes” first, then the

variables they influence and so on, until leaves are reached.
Leaves have no direct causal influence over other variables

I Example: Construct DAG for the car example using the
ordering s, t, g , f , b

I “Wrong” ordering will give same joint distribution, but will
require the specification of more numbers than otherwise
necessary
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Specifying conditional probability distributions

I CPDs: conditional probability distributions
I CPTs: conditional probability tables for discrete variables
I Where do the numbers come from? Can be elicited from

experts, or learned (see later)
I CPTs can still be very large (and difficult to specify) if there

are many parents for a node. Can use combination rules such
as the logistic regression form
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Graph concepts

I Directed graph: graph where all edges are directed
I Directed acyclic graph (DAG): by following the direction of

the arrows you will never visit a node more than once
I xi is a parent of xj if there is a (directed) edge from xi to xj .

The set of parents of xi in the graph is denoted by
pa(xi) = pai , e.g. pa(x3) = pa3 = {x1, x2}.

I xj is a child of xi if xi ∈ pa(xj), e.g. x3 and x5 are children of
x2.

x1 x2

x3

x4

x5
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Graph concepts

I A path or trail from xi to xj is a sequence of distinct connected
nodes starting at xi and ending at xj . The direction of the
arrows does not matter. For example: x5, x2, x3, x1 is a trail.

I A directed path is a sequence of connected nodes where we
follow the direction of the arrows. For example: x1, x3, x4 is a
directed path. But x5, x2, x3, x1 is not a directed path.

x1 x2

x3

x4

x5

PMR 2023 18 / 34



Graph concepts
I The ancestors anc(xi) of xi are all the nodes where a directed

path leads to xi . For example, anc(x4) = {x1, x3, x2}.
I The descendants desc(xi) of xi are all the nodes that can be

reached on a directed path from xi . For example,
desc(x1) = {x3, x4}.
(Note: sometimes, xi is included in the set of ancestors and
descendants)

I The non-descendents of xi are all the nodes in a graph except
xi and the descendants of xi . For example,
nondesc(x3) = {x1, x2, x5}

x1 x2

x3

x4

x5
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Graph concepts

I Topological ordering: an ordering (x1, . . . , xd) of some
variables xi is topological relative to a graph if parents come
before their children in the ordering.
(whenever there is a directed edge from xi to xj , xi occurs prior to
xj in the ordering.)

I Examples for the graph on the
right:
I x1, x2, x3, x4, x5
I x2, x5, x1, x3, x4
I x2, x1, x3, x5, x4

x1 x2

x3

x4

x5

I There is always at least one ordering that is topological
relative to a DAG.

I The πi in the factorisation are equal to the parents pai in the
graph. We will call both sets the “parents” of xi .
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Directed graphical model (DGM)

I We started with a factorised pdf/pmf and associated a DAG
with it.

I We can also go the other way around and start with a DAG.
I Definition A directed graphical model based on a DAG G with

d nodes and associated random variables xi is the set of
pdfs/pmfs that factorise as

p(x1, . . . , xd) =
d∏

i=1
k(xi |pai)

where the k(xi |pai) are some conditional pdfs/pmfs. (they are
sometimes called kernels or factors)

I Remark: a pdf/pmf p(x1, . . . , xd) that can be written as
above is said to “factorise over the graph G”. We also say
that it has property F (G) (“F” for factorisation).
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Why set of pdfs/pmfs?

I The directed graphical model corresponds to a set of
probability distributions .

I This is because we did not specify any numerical values for
the k(xi |pai). We only specified which variables the
conditionals take as input (namely xi and pai).

I The set includes all those distributions that you get by
looping, for all variables xi , over all possible k(xi |pai).
(e.g. tables or parameter values in parametrised models)

I While a probability distribution corresponds to a probabilistic
model, a set of probability distributions (probabilistic models)
is often called a statistical model.

I Individual pdfs/pmf in the set are typically also called a
directed graphical model.

I Other names for directed graphical models: belief network,
Bayesian network, Bayes network.
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The factors k(xi |pai) equal the conditionals p(xi |pai)

I When we decomposed p(x) with the chain rule and inserted
conditional independencies, we obtained

p(x) =
∏

i
p(xi |πi)

where the p(xi |πi) where the conditionals of xi given πi .
I We now show that the k(xi |pai) in the definition of the DGM

are equal to the p(xi |pai).
I Assume p(x) factorises over a DAG G and hence that

p(x) = ∏d
i=1 k(xi |pai). First step is to label the variables such

that the ordering x1, . . . , xd is topological relative to G .
I In a topological ordering, the parents come before the

children. Hence pai ⊆ prei = (x1, . . . , xi−1)
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The factors k(xi |pai) equal the conditionals p(xi |pai)

p(x1, . . . , xd) =
∏d

i=1 k(xi |pai)
I We next compute p(x1, . . . , xd−1) using the sum rule:

p(x1, . . . , xd−1) =
∫

p(x1, . . . , xd)dxd

=
∫ d∏

i=1
k(xi |pai)dxd

=
∫ d−1∏

i=1
k(xi |pai)k(xd |pad)dxd (xd /∈ pai , i < d)

=
d−1∏
i=1

k(xi |pai)
∫

k(xd |pad)dxd

=
d−1∏
i=1

k(xi |pai)
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The factors k(xi |pai) equal the conditionals p(xi |pai)
Hence:

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1)

=
∏d

i=1 k(xi |pai)∏d−1
i=1 k(xi |pai)

= k(xd |pad)
Split (x1, . . . , xd−1) = pred into non-overlapping sets pad and
x̃d = pred \ pad so that p(xd |x1, . . . , xd−1) = p(xd |x̃d ,pad).
By the product rule, we have

p(xd , x̃d |pad) = p(xd |x̃d , pad)p(x̃d |pad)
= k(xd |pad)p(x̃d |pad)

Next sum out x̃d to obtain

p(xd |pad) =
∫

p(xd , x̃d |pad)dx̃d = k(xd |pad)
∫

p(x̃d |pad)dx̃d

= k(xd |pad)
where we have used that xd and pad are not part of x̃d .
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The factors k(xi |pai) equal the conditionals p(xi |pai)
Hence:

p(xd |x1, . . . , xd−1) = p(xd |pad) = k(xd |pad)

Next, note that p(x1, . . . , xd−1) has the same form as
p(x1, . . . , xd): apply same procedure to all p(x1, . . . , xk), for
smaller and smaller k ≤ d − 1

Proves that for p(x) = ∏d
i=1 k(xi |pai):

(1) k(xi |pai) = p(xi |pai) for i = 1, . . . , d
(As desired!)

(2) p(xi |prei) = p(xi |pai) for i = 1, . . . , d
(This means that the factorisation of the DGM implies independencies, see later)

(3) p(x1, . . . , xk) = ∏k
i=1 k(xi |pai) fo k = 1, . . . , d

(The distr of the first k variables is given by the first k terms in the factorisation)

Note that (2) and (3) depend on the particular topological ordering chosen, e.g. it is
“first k variables” in the chosen topological ordering.
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Ancestral sampling

I This means that the DAG not only specifies the joint
distribution p(x) = ∏d

i=1 k(xi |pai) but also a sampling/data
generating process.

I To generate data from p(x):
1. Pick an ordering x1, . . . , xd of the random variables that is

topological to G .
2. x1 does not have any parents, i.e. pa1 = ∅.
3. Following the topological ordering, sample from k(xi |pai),

i = 1, . . . , d .
I Moreover, from the results above:

I xi |pai ∼ p(xi |pai)
(The notation means that xi follows or is sampled from p(xi |pai ))

I (x1, . . . , xk) ∼ p(x1, . . . , xk) for all k
(To e.g. sample from (x1, x2), you can stop the sampling after i = 2.)

I It’s called ancestral sampling because we sample the parents
before the children, following the arrows in the DAG.
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Example

DAG:

a z

q

e

h

Random variables: a, z , q, e, h

Parent sets: paa = paz = ∅,paq = {a, z},pae = {q},pah = {z}.

Directed graphical model: set of pdfs/pmfs p(a, z , q, e, h) that
factorise as:

p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)

PMR 2023 30 / 34



Example: Markov chain

DAG:

x1 x2 x3 x4 x5

Random variables: x1, x2, x3, x4, x5

Parent sets:
pa1 = ∅,pa2 = {x1}, pa3 = {x2},pa4 = {x3}, pa5 = {x4}.

Directed graphical model: set of pdfs/pmfs p(x1, . . . , x5) that
factorise as:

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)
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Example: Probabilistic PCA, factor analysis, ICA
(PCA: principal component analysis; ICA: independent component analysis)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

Random variables: x1, x2, x3, y1, . . . , y5

Parent sets: pa(xi) = ∅,pa(yi) = {x1, x2, x3} for all i .

Directed graphical model: set of pdfs/pmfs p(x1, x2, x3, y1, . . . , y5)
that factorise as:

p(x1, x2, x3, y1, . . . , y5) =p(x1)p(x2)p(x3)p(y1|x1, x2, x3)
p(y2|x1, x2, x3) . . . p(y5|x1, x2, x3)
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2023 CC BY 4.0 cb.
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