Directed Graphical Models I

Definition and Basic Properties

Chris Williams
(based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2023

Recap

- We talked about reasonably weak assumption to facilitate the efficient representation of a probabilistic model
- Independence assumptions reduce the number of interacting variables, e.g.
- $p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z})$
- $p\left(x_{1}, \ldots, x_{d}\right)=p\left(x_{d} \mid x_{d-3}, x_{d-2}, x_{d-1}\right) p\left(x_{1}, \ldots, x_{d-1}\right)$
- Parametric assumptions restrict the way the variables may interact.

Program

1. Visualising factorisations with directed acyclic graphs
2. Directed graphical models

Program

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts

2. Directed graphical models

Chain rule

Iteratively applying the product rule allows us to factorise any joint pdf (pmf) $p(\mathbf{x})=p\left(x_{1}, x_{2}, \ldots, x_{d}\right)$ into product of conditional pdfs.

$$
\begin{aligned}
p(\mathbf{x}) & =p\left(x_{1}\right) p\left(x_{2}, \ldots, x_{d} \mid x_{1}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3}, \ldots, x_{d} \mid x_{1}, x_{2}\right) \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4}, \ldots, x_{d} \mid x_{1}, x_{2}, x_{3}\right) \\
& \vdots \\
& =p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) \ldots p\left(x_{d} \mid x_{1}, \ldots x_{d-1}\right) \\
& =p\left(x_{1}\right) \prod_{i=2}^{d} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \\
& =\prod_{i=1}^{d} p\left(x_{i} \mid \operatorname{pre}_{i}\right)
\end{aligned}
$$

with pre $_{i}=\operatorname{pre}\left(x_{i}\right)=\left\{x_{1}, \ldots, x_{i-1}\right\}, \operatorname{pre}_{1}=\varnothing$ and $p\left(x_{1} \mid \varnothing\right)=p\left(x_{1}\right)$ The chain rule can be applied to any ordering $x_{k_{1}}, \ldots x_{k_{d}}$. Different orderings give different factorisations.

Conditional independencies simplify the factors

- Given: a pdf/pmf that factorises as $p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid\right.$ pre $\left._{i}\right)$ for the ordering x_{1}, \ldots, x_{d}.
- For each x_{i}, we condition on all previous variables in the ordering.
- Assume that, for each i, there is a minimal subset of variables $\pi_{i} \subseteq$ pre $_{i}$ such that $p(\mathbf{x})$ satisfies

$$
x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i}
$$

for all i.

- By definition of conditional independence: $p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)=p\left(x_{i} \mid\right.$ pre $\left._{i}\right)=p\left(x_{i} \mid \pi_{i}\right)$
- With the convention $\pi_{1}=\varnothing$, we obtain the factorisation

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)
$$

Why does it matter?

- Denote the predecessors of x_{i} in the ordering by

$$
\text { pre }_{i}=\left\{x_{1}, \ldots, x_{i-1}\right\}, \text { and let } \pi_{i} \subseteq \text { pre }_{i}
$$

$$
x_{i} \Perp\left(\operatorname{pre}_{i} \backslash \pi_{i}\right) \mid \pi_{i} \text { for all } \Longrightarrow p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)
$$

- What's the point?

1. $p\left(x_{i} \mid \pi_{i}\right)$ involve fewer interacting variables than $p\left(x_{i} \mid \operatorname{pre}_{i}\right)$.

- Makes them easier to model.
- If specified as a table, fewer numbers are needed for their representation (computational advantage).

2. We can visualise the interactions between the variables with a graph.

Visualisation as a directed graph
Assume $p(\mathbf{x})=\prod_{i=1}^{d} p\left(x_{i} \mid \pi_{i}\right)$ with $\pi_{i} \subseteq \operatorname{pre}_{i}$. We visualise the model as a graph with the random variables x_{i} as nodes, and directed edges that point from the $x_{j} \in \pi_{i}$ to the x_{i}. This results in a directed acyclic graph (DAG).

Example:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{2}\right)
$$

Visualisation as a directed graph

Example:

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)
$$

Factorisation obtained by chain rule \equiv fully connected directed acyclic graph.

Example: Car start belief network

- Unstructured joint distribution requires $2^{5}-1=31$ numbers to specify it. Here can use 12 numbers
- Take the ordering b, f, g, t, s. Joint can be expressed as

$$
p(b, f, g, t, s)=p(b) p(f \mid b) p(g \mid b, f) p(t \mid b, f, g) p(s \mid b, f, g, t)
$$

- Conditional independences (missing links) give

$$
p(b, f, g, t, s)=p(b) p(f) p(g \mid b, f) p(t \mid b) p(s \mid t, f)
$$

Example: Car start belief network

$\mathrm{P}(\mathrm{s}=$ no $\mid \mathrm{t}=\mathrm{yes}, \mathrm{f}=$ not empty $)=0.01$
$\mathrm{P}(\mathrm{s}=\mathrm{no} \mid \mathrm{t}=\mathrm{yes}, \mathrm{f}=\mathrm{empty})=0.92$
Heckerman (1995)
$\mathrm{P}(\mathrm{s}=\mathrm{no} \mid \mathrm{t}=$ no, $\mathrm{f}=$ not empty $)=1.0$
$\mathrm{P}(\mathrm{s}=\mathrm{no} \mid \mathrm{t}=\mathrm{no}, \mathrm{f}=$ empty $)=1.0$
What is probability of

$$
p(b=\operatorname{good}, t=n o, g=\text { empty }, f=\text { not empty }, s=n o) ?
$$

Example: Linear-Gaussian networks

- Let the x 's be real-valued

$$
p\left(x_{i} \mid \pi_{i}\right)=N\left(x_{i} \mid \mathbf{w}_{i}^{T} \mathbf{x}_{\pi_{i}}+b_{i}, \sigma_{i}^{2}\right)
$$

- $p(\mathbf{x})$ is jointly Gaussian
- Exact inference can be carried out
(i) by first constructing the joint and conditioning, or
(ii) by exploiting the graphical structure
- Example: factor analysis (see later)

Constructing belief networks

1. Choose a relevant set of variables $\left\{x_{i}\right\}$ that describe the domain
2. Choose an ordering for the variables
3. While there are variables left
(a) Pick a variable x_{i} and add it to the network
(b) Set Parents $\left(x_{i}\right)$ to some minimal set of nodes already in the net
(c) Define the conditional probability table for x_{i}

- This procedure is guaranteed to produce a DAG
- To ensure maximum sparsity, add "root causes" first, then the variables they influence and so on, until leaves are reached. Leaves have no direct causal influence over other variables
- Example: Construct DAG for the car example using the ordering s, t, g, f, b
- "Wrong" ordering will give same joint distribution, but will require the specification of more numbers than otherwise necessary

Specifying conditional probability distributions

- CPDs: conditional probability distributions
- CPTs: conditional probability tables for discrete variables
- Where do the numbers come from? Can be elicited from experts, or learned (see later)
- CPTs can still be very large (and difficult to specify) if there are many parents for a node. Can use combination rules such as the logistic regression form

Graph concepts

- Directed graph: graph where all edges are directed
- Directed acyclic graph (DAG): by following the direction of the arrows you will never visit a node more than once
- x_{i} is a parent of x_{j} if there is a (directed) edge from x_{i} to x_{j}. The set of parents of x_{i} in the graph is denoted by $\mathrm{pa}\left(x_{i}\right)=\mathrm{pa}_{\text {i }}$, e.g. $\mathrm{pa}\left(x_{3}\right)=\mathrm{pa}_{3}=\left\{x_{1}, x_{2}\right\}$.
- x_{j} is a child of x_{i} if $x_{i} \in \mathrm{pa}\left(x_{j}\right)$, e.g. x_{3} and x_{5} are children of x_{2}.

Graph concepts

- A path or trail from x_{i} to x_{j} is a sequence of distinct connected nodes starting at x_{i} and ending at x_{j}. The direction of the arrows does not matter. For example: $x_{5}, x_{2}, x_{3}, x_{1}$ is a trail.
- A directed path is a sequence of connected nodes where we follow the direction of the arrows. For example: x_{1}, x_{3}, x_{4} is a directed path. But $x_{5}, x_{2}, x_{3}, x_{1}$ is not a directed path.

Graph concepts

- The ancestors anc $\left(x_{i}\right)$ of x_{i} are all the nodes where a directed path leads to x_{i}. For example, $\operatorname{anc}\left(x_{4}\right)=\left\{x_{1}, x_{3}, x_{2}\right\}$.
- The descendants $\operatorname{desc}\left(x_{i}\right)$ of x_{i} are all the nodes that can be reached on a directed path from x_{i}. For example, $\operatorname{desc}\left(x_{1}\right)=\left\{x_{3}, x_{4}\right\}$. (Note: sometimes, x_{i} is included in the set of ancestors and descendants)
- The non-descendents of x_{i} are all the nodes in a graph except x_{i} and the descendants of x_{i}. For example, $\operatorname{nondesc}\left(x_{3}\right)=\left\{x_{1}, x_{2}, x_{5}\right\}$

Graph concepts

- Topological ordering: an ordering $\left(x_{1}, \ldots, x_{d}\right)$ of some variables x_{i} is topological relative to a graph if parents come before their children in the ordering. (whenever there is a directed edge from x_{i} to x_{j}, x_{i} occurs prior to x_{j} in the ordering.)
- Examples for the graph on the right:

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \\
- & x_{2}, x_{5}, x_{1}, x_{3}, x_{4} \\
> & x_{2}, x_{1}, x_{3}, x_{5}, x_{4}
\end{aligned}
$$

- There is always at least one ordering that is topological relative to a DAG.
- The π_{i} in the factorisation are equal to the parents pa_{i} in the graph. We will call both sets the "parents" of x_{i}.

Program

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts

2. Directed graphical models

Program

1. Visualising factorisations with directed acyclic graphs
2. Directed graphical models

- Definition
- Conditionals, marginals, and ancestral sampling
- Examples

Directed graphical model (DGM)

- We started with a factorised pdf/pmf and associated a DAG with it.
- We can also go the other way around and start with a DAG.
- Definition A directed graphical model based on a DAG G with d nodes and associated random variables x_{i} is the set of pdfs/pmfs that factorise as

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)
$$

where the $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ are some conditional pdfs/pmfs. (they are sometimes called kernels or factors)

- Remark: a pdf/pmf $p\left(x_{1}, \ldots, x_{d}\right)$ that can be written as above is said to "factorise over the graph G ". We also say that it has property $F(G)$ (" F " for factorisation).

Why set of pdfs/pmfs?

- The directed graphical model corresponds to a set of probability distributions.
- This is because we did not specify any numerical values for the $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$. We only specified which variables the conditionals take as input (namely x_{i} and pa_{i}).
- The set includes all those distributions that you get by looping, for all variables x_{i}, over all possible $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$. (e.g. tables or parameter values in parametrised models)
- While a probability distribution corresponds to a probabilistic model, a set of probability distributions (probabilistic models) is often called a statistical model.
- Individual pdfs/pmf in the set are typically also called a directed graphical model.
- Other names for directed graphical models: belief network, Bayesian network, Bayes network.

The factors $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ equal the conditionals $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$

- When we decomposed $p(\mathbf{x})$ with the chain rule and inserted conditional independencies, we obtained

$$
p(\mathbf{x})=\prod_{i} p\left(x_{i} \mid \pi_{i}\right)
$$

where the $p\left(x_{i} \mid \pi_{i}\right)$ where the conditionals of x_{i} given π_{i}.

- We now show that the $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ in the definition of the DGM are equal to the $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$.
- Assume $p(\mathbf{x})$ factorises over a DAG G and hence that $p(\mathbf{x})=\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)$. First step is to label the variables such that the ordering x_{1}, \ldots, x_{d} is topological relative to G.
- In a topological ordering, the parents come before the children. Hence $\mathrm{pa}_{i} \subseteq \operatorname{pre}_{i}=\left(x_{1}, \ldots, x_{i-1}\right)$

The factors $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ equal the conditionals $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)
$$

- We next compute $p\left(x_{1}, \ldots, x_{d-1}\right)$ using the sum rule:

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{d-1}\right) & =\int p\left(x_{1}, \ldots, x_{d}\right) \mathrm{d} x_{d} \\
& =\int \prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right) \mathrm{d} x_{d} \\
& =\int \prod_{i=1}^{d-1} k\left(x_{i} \mid \mathrm{pa}_{i}\right) k\left(x_{d} \mid \mathrm{pa}_{d}\right) \mathrm{d} x_{d} \quad\left(x_{d} \notin \mathrm{pa}_{i}, i<d\right) \\
& =\prod_{i=1}^{d-1} k\left(x_{i} \mid \mathrm{pa}_{i}\right) \int k\left(x_{d} \mid \mathrm{pa}_{d}\right) \mathrm{d} x_{d} \\
& =\prod_{i=1}^{d-1} k\left(x_{i} \mid \mathrm{pa}_{i}\right)
\end{aligned}
$$

The factors $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ equal the conditionals $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$
Hence:

$$
\begin{aligned}
p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right) & =\frac{p\left(x_{1}, \ldots, x_{d}\right)}{p\left(x_{1}, \ldots, x_{d-1}\right)}=\frac{\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)}{\prod_{i=1}^{d-1} k\left(x_{i} \mid \mathrm{pa}_{i}\right)} \\
& =k\left(x_{d} \mid \mathrm{pa}_{d}\right)
\end{aligned}
$$

Split $\left(x_{1}, \ldots, x_{d-1}\right)=$ pre $_{d}$ into non-overlapping sets pa ${ }_{d}$ and $\tilde{\mathbf{x}}_{d}=\operatorname{pre}_{d} \backslash \mathrm{pa}_{d}$ so that $p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)=p\left(x_{d} \mid \tilde{\mathbf{x}}_{d}, \mathrm{pa}_{d}\right)$.
By the product rule, we have

$$
\begin{aligned}
p\left(x_{d}, \tilde{\mathbf{x}}_{d} \mid \mathrm{pa}_{d}\right) & =p\left(x_{d} \mid \tilde{\mathbf{x}}_{d}, \mathrm{pa}_{d}\right) p\left(\tilde{\mathbf{x}}_{d} \mid \mathrm{pa}_{d}\right) \\
& =k\left(x_{d} \mid \mathrm{pa}_{d}\right) p\left(\tilde{\mathbf{x}}_{d} \mid \mathrm{pa}_{d}\right)
\end{aligned}
$$

Next sum out $\tilde{\mathbf{x}}_{d}$ to obtain

$$
\begin{aligned}
p\left(x_{d} \mid \mathrm{pa}_{d}\right) & =\int p\left(x_{d}, \tilde{\mathbf{x}}_{d} \mid \mathrm{pa}_{d}\right) \mathrm{d} \tilde{\mathbf{x}}_{d}=k\left(x_{d} \mid \mathrm{pa}_{d}\right) \int p\left(\tilde{\mathbf{x}}_{d} \mid \mathrm{pa}_{d}\right) \mathrm{d} \tilde{\mathbf{x}}_{d} \\
& =k\left(x_{d} \mid \mathrm{pa}_{d}\right)
\end{aligned}
$$

where we have used that x_{d} and pa_{d} are not part of $\tilde{\mathbf{x}}_{d}$.

The factors $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ equal the conditionals $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$

Hence:

$$
p\left(x_{d} \mid x_{1}, \ldots, x_{d-1}\right)=p\left(x_{d} \mid \mathrm{pa}_{d}\right)=k\left(x_{d} \mid \mathrm{pa}_{d}\right)
$$

Next, note that $p\left(x_{1}, \ldots, x_{d-1}\right)$ has the same form as $p\left(x_{1}, \ldots, x_{d}\right)$: apply same procedure to all $p\left(x_{1}, \ldots, x_{k}\right)$, for smaller and smaller $k \leq d-1$

Proves that for $p(\mathbf{x})=\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)$:
(1) $k\left(x_{i} \mid \mathrm{pa}_{i}\right)=p\left(x_{i} \mid \mathrm{pa}_{i}\right)$ for $i=1, \ldots, d$ (As desired!)
(2) $p\left(x_{i} \mid \mathrm{pre}_{i}\right)=p\left(x_{i} \mid \mathrm{pa}_{i}\right)$ for $i=1, \ldots, d$
(This means that the factorisation of the DGM implies independencies, see later)
(3) $p\left(x_{1}, \ldots, x_{k}\right)=\prod_{i=1}^{k} k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ fo $k=1, \ldots, d$
(The distr of the first k variables is given by the first k terms in the factorisation)
Note that (2) and (3) depend on the particular topological ordering chosen, e.g. it is "first k variables" in the chosen topological ordering.

Ancestral sampling

- This means that the DAG not only specifies the joint distribution $p(\mathbf{x})=\prod_{i=1}^{d} k\left(x_{i} \mid \mathrm{pa}_{i}\right)$ but also a sampling/data generating process.
- To generate data from $p(\mathbf{x})$:

1. Pick an ordering x_{1}, \ldots, x_{d} of the random variables that is topological to G.
2. x_{1} does not have any parents, i.e. $\mathrm{pa}_{1}=\varnothing$.
3. Following the topological ordering, sample from $k\left(x_{i} \mid \mathrm{pa}_{i}\right)$, $i=1, \ldots, d$.

- Moreover, from the results above:
$-x_{i} \mid \mathrm{pa}_{i} \sim p\left(x_{i} \mid \mathrm{pa}_{i}\right)$
(The notation means that x_{i} follows or is sampled from $p\left(x_{i} \mid \mathrm{pa}_{i}\right)$)
- $\left(x_{1}, \ldots, x_{k}\right) \sim p\left(x_{1}, \ldots, x_{k}\right)$ for all k
(To e.g. sample from $\left(x_{1}, x_{2}\right)$, you can stop the sampling after $i=2$.)
- It's called ancestral sampling because we sample the parents before the children, following the arrows in the DAG.

Example

DAG:

Random variables: a, z, q, e, h
Parent sets: $\mathrm{pa}_{\mathrm{a}}=\mathrm{pa}_{z}=\varnothing, \mathrm{pa}_{q}=\{a, z\}, \mathrm{pa}_{e}=\{q\}, \mathrm{pa}_{h}=\{z\}$.
Directed graphical model: set of pdfs/pmfs $p(a, z, q, e, h)$ that factorise as:

$$
p(a, z, q, e, h)=p(a) p(z) p(q \mid a, z) p(e \mid q) p(h \mid z)
$$

Example: Markov chain

DAG:

Random variables: $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
Parent sets:
$\mathrm{pa}_{1}=\varnothing, \mathrm{pa}_{2}=\left\{x_{1}\right\}, \mathrm{pa}_{3}=\left\{x_{2}\right\}, \mathrm{pa}_{4}=\left\{x_{3}\right\}, \mathrm{pa}_{5}=\left\{x_{4}\right\}$.
Directed graphical model: set of pdfs/pmfs $p\left(x_{1}, \ldots, x_{5}\right)$ that factorise as:

$$
p(\mathbf{x})=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{4}\right)
$$

Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)
DAG:

Random variables: $x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{5}$
Parent sets: $\mathrm{pa}\left(x_{i}\right)=\varnothing, \operatorname{pa}\left(y_{i}\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$ for all i.
Directed graphical model: set of pdfs/pmfs $p\left(x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{5}\right)$ that factorise as:

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}, y_{1}, \ldots, y_{5}\right)= & p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3}\right) p\left(y_{1} \mid x_{1}, x_{2}, x_{3}\right) \\
& p\left(y_{2} \mid x_{1}, x_{2}, x_{3}\right) \ldots p\left(y_{5} \mid x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Program recap

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts

2. Directed graphical models

- Definition
- Conditionals, marginals, and ancestral sampling
- Examples

Credits

These slides are modified from ones produced by Michael Gutmann, made available under Creative Commons licence CC BY 4.0.
©Michael Gutmann and Chris Williams, The University of Edinburgh 2018-2023 CC BY 4.0 ©(i).

