Directed Graphical Models I Definition and Basic Properties

Chris Williams (based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2023

- We talked about reasonably weak assumption to facilitate the efficient representation of a probabilistic model
- Independence assumptions reduce the number of interacting variables, e.g.

$$p(\mathbf{x},\mathbf{y},\mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$$

- $p(x_1,\ldots,x_d) = p(x_d|x_{d-3},x_{d-2},x_{d-1})p(x_1,\ldots,x_{d-1})$
- Parametric assumptions restrict the way the variables may interact.

- 1. Visualising factorisations with directed acyclic graphs
- 2. Directed graphical models

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts
- 2. Directed graphical models

Chain rule

Iteratively applying the product rule allows us to factorise any joint pdf (pmf) $p(\mathbf{x}) = p(x_1, x_2, \dots, x_d)$ into product of conditional pdfs.

$$p(\mathbf{x}) = p(x_1)p(x_2, \dots, x_d | x_1)$$

= $p(x_1)p(x_2 | x_1)p(x_3, \dots, x_d | x_1, x_2)$
= $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)p(x_4, \dots, x_d | x_1, x_2, x_3)$
:
= $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \dots p(x_d | x_1, \dots x_{d-1})$
= $p(x_1) \prod_{i=2}^d p(x_i | x_1, \dots, x_{i-1})$
= $\prod_{i=1}^d p(x_i | \text{pre}_i)$

with $\operatorname{pre}_i = \operatorname{pre}(x_i) = \{x_1, \ldots, x_{i-1}\}$, $\operatorname{pre}_1 = \emptyset$ and $p(x_1|\emptyset) = p(x_1)$ The chain rule can be applied to any ordering x_{k_1}, \ldots, x_{k_d} . Different orderings give different factorisations.

PMR 2023

Conditional independencies simplify the factors

- ► Given: a pdf/pmf that factorises as p(x) = ∏^d_{i=1} p(x_i|pre_i) for the ordering x₁,..., x_d.
- For each x_i, we condition on all previous variables in the ordering.
- Assume that, for each *i*, there is a minimal subset of variables $\pi_i \subseteq \operatorname{pre}_i$ such that $p(\mathbf{x})$ satisfies

$$x_i \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$$

for all *i*.

- ► By definition of conditional independence: $p(x_i|x_1,...,x_{i-1}) = p(x_i|\text{pre}_i) = p(x_i|\pi_i)$
- ▶ With the convention $\pi_1 = \emptyset$, we obtain the factorisation

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d p(x_i|\pi_i)$$

Why does it matter?

▶ Denote the predecessors of x_i in the ordering by $pre_i = \{x_1, \ldots, x_{i-1}\}$, and let $\pi_i \subseteq pre_i$.

$$x_i \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i \text{ for all } \Longrightarrow p(\mathbf{x}) = \prod_{i=1}^d p(x_i \mid \pi_i)$$

What's the point?

- 1. $p(x_i|\pi_i)$ involve fewer interacting variables than $p(x_i|\text{pre}_i)$.
 - Makes them easier to model.
 - If specified as a table, fewer numbers are needed for their representation (computational advantage).
- 2. We can visualise the interactions between the variables with a graph.

Visualisation as a directed graph

Assume $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \pi_i)$ with $\pi_i \subseteq \text{pre}_i$. We visualise the model as a graph with the random variables x_i as nodes, and directed edges that point from the $x_j \in \pi_i$ to the x_i . This results in a directed acyclic graph (DAG).

Example:

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_3)p(x_5|x_2)$$

Visualisation as a directed graph

Example:

 $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)p(x_4|x_1, x_2, x_3)$

Factorisation obtained by chain rule \equiv fully connected directed acyclic graph.

Example: Car start belief network

Unstructured joint distribution requires 2⁵ - 1 = 31 numbers to specify it. Here can use 12 numbers
 Take the ordering b, f, g, t, s. Joint can be expressed as

p(b, f, g, t, s) = p(b)p(f|b)p(g|b, f)p(t|b, f, g)p(s|b, f, g, t)

Conditional independences (missing links) give

p(b, f, g, t, s) = p(b)p(f)p(g|b, f)p(t|b)p(s|t, f)

Example: Car start belief network

p(b = good, t = no, g = empty, f = not empty, s = no)?

Let the x's be real-valued

$$p(x_i|\pi_i) = N(x_i|\mathbf{w}_i^T\mathbf{x}_{\pi_i} + b_i, \sigma_i^2)$$

- ▶ $p(\mathbf{x})$ is jointly Gaussian
- Exact inference can be carried out
 - (i) by first constructing the joint and conditioning, or
 - (ii) by exploiting the graphical structure
- Example: factor analysis (see later)

- 1. Choose a relevant set of variables $\{x_i\}$ that describe the domain
- 2. Choose an ordering for the variables
- 3. While there are variables left
 - (a) Pick a variable x_i and add it to the network
 - (b) Set Parents(x_i) to some minimal set of nodes already in the net
 - (c) Define the conditional probability table for x_i

- This procedure is guaranteed to produce a DAG
- To ensure maximum sparsity, add "root causes" first, then the variables they influence and so on, until leaves are reached. Leaves have no direct causal influence over other variables
- Example: Construct DAG for the car example using the ordering s, t, g, f, b
- "Wrong" ordering will give same joint distribution, but will require the specification of more numbers than otherwise necessary

Specifying conditional probability distributions

- CPDs: conditional probability distributions
- CPTs: conditional probability tables for discrete variables
- Where do the numbers come from? Can be elicited from experts, or learned (see later)
- CPTs can still be very large (and difficult to specify) if there are many parents for a node. Can use combination rules such as the logistic regression form

- Directed graph: graph where all edges are directed
- Directed acyclic graph (DAG): by following the direction of the arrows you will never visit a node more than once
- *x_i* is a parent of *x_j* if there is a (directed) edge from *x_i* to *x_j*. The set of parents of *x_i* in the graph is denoted by pa(*x_i*) = pa_i, e.g. pa(*x*₃) = pa₃ = {*x*₁, *x*₂}.

▶ x_j is a child of x_i if $x_i \in pa(x_j)$, e.g. x_3 and x_5 are children of x_2 .

- A path or trail from x_i to x_j is a sequence of distinct connected nodes starting at x_i and ending at x_j. The direction of the arrows does *not* matter. For example: x₅, x₂, x₃, x₁ is a trail.
- A directed path is a sequence of connected nodes where we follow the direction of the arrows. For example: x₁, x₃, x₄ is a directed path. But x₅, x₂, x₃, x₁ is not a directed path.

- ▶ The ancestors $anc(x_i)$ of x_i are all the nodes where a directed path leads to x_i . For example, $anc(x_4) = \{x_1, x_3, x_2\}$.
- The descendants desc(x_i) of x_i are all the nodes that can be reached on a directed path from x_i. For example,

 $\operatorname{desc}(x_1) = \{x_3, x_4\}.$

(Note: sometimes, x_i is included in the set of ancestors and descendants)

The non-descendents of x_i are all the nodes in a graph except x_i and the descendants of x_i. For example,

nondesc $(x_3) = \{x_1, x_2, x_5\}$

- Topological ordering: an ordering (x₁,...,x_d) of some variables x_i is topological relative to a graph if parents come before their children in the ordering. (whenever there is a directed edge from x_i to x_j, x_i occurs prior to x_j in the ordering.)
- Examples for the graph on the right:
 - \blacktriangleright x_1, x_2, x_3, x_4, x_5
 - \blacktriangleright x_2, x_5, x_1, x_3, x_4
 - \blacktriangleright x₂, x₁, x₃, x₅, x₄

- There is always at least one ordering that is topological relative to a DAG.
- The π_i in the factorisation are equal to the parents pa_i in the graph. We will call both sets the "parents" of x_i .

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts
- 2. Directed graphical models

1. Visualising factorisations with directed acyclic graphs

- 2. Directed graphical models
 - Definition
 - Conditionals, marginals, and ancestral sampling
 - Examples

Directed graphical model (DGM)

- We started with a factorised pdf/pmf and associated a DAG with it.
- We can also go the other way around and start with a DAG.
- Definition A directed graphical model based on a DAG G with d nodes and associated random variables x_i is the set of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d k(x_i|\mathrm{pa}_i)$$

where the $k(x_i | pa_i)$ are some conditional pdfs/pmfs. (they are sometimes called kernels or factors)

Remark: a pdf/pmf p(x₁,...,x_d) that can be written as above is said to "factorise over the graph G". We also say that it has property F(G) ("F" for factorisation).

Why set of pdfs/pmfs?

- The directed graphical model corresponds to a set of probability distributions.
- This is because we did not specify any numerical values for the k(x_i|pa_i). We only specified which variables the conditionals take as input (namely x_i and pa_i).
- The set includes all those distributions that you get by looping, for all variables x_i, over all possible k(x_i|pa_i). (e.g. tables or parameter values in parametrised models)
- While a probability distribution corresponds to a probabilistic model, a set of probability distributions (probabilistic models) is often called a statistical model.
- Individual pdfs/pmf in the set are typically also called a directed graphical model.
- Other names for directed graphical models: belief network, Bayesian network, Bayes network.

The factors $k(x_i | pa_i)$ equal the conditionals $p(x_i | pa_i)$

When we decomposed p(x) with the chain rule and inserted conditional independencies, we obtained

$$p(\mathbf{x}) = \prod_i p(x_i | \pi_i)$$

where the $p(x_i|\pi_i)$ where the conditionals of x_i given π_i .

- We now show that the k(x_i|pa_i) in the definition of the DGM are equal to the p(x_i|pa_i).
- Assume p(x) factorises over a DAG G and hence that p(x) = ∏^d_{i=1} k(x_i|pa_i). First step is to label the variables such that the ordering x₁,..., x_d is topological relative to G.
- In a topological ordering, the parents come before the children. Hence pa_i ⊆ pre_i = (x₁,..., x_{i-1})

The factors $k(x_i | pa_i)$ equal the conditionals $p(x_i | pa_i)$

• We next compute
$$p(x_1, \ldots, x_{d-1})$$
 using the sum rule:

$$p(x_1, \dots, x_{d-1}) = \int p(x_1, \dots, x_d) dx_d$$

= $\int \prod_{i=1}^d k(x_i | pa_i) dx_d$
= $\int \prod_{i=1}^{d-1} k(x_i | pa_i) k(x_d | pa_d) dx_d$ ($x_d \notin pa_i, i < d$)
= $\prod_{i=1}^{d-1} k(x_i | pa_i) \int k(x_d | pa_d) dx_d$
= $\prod_{i=1}^{d-1} k(x_i | pa_i)$

 $p(x_1,\ldots,x_d) = \prod_{i=1}^d k(x_i | \mathrm{pa}_i)$

The factors $k(x_i | pa_i)$ equal the conditionals $p(x_i | pa_i)$

Hence:

$$p(x_d|x_1,...,x_{d-1}) = \frac{p(x_1,...,x_d)}{p(x_1,...,x_{d-1})} = \frac{\prod_{i=1}^d k(x_i|pa_i)}{\prod_{i=1}^{d-1} k(x_i|pa_i)} = k(x_d|pa_d)$$

Split $(x_1, \ldots, x_{d-1}) = \text{pre}_d$ into non-overlapping sets pa_d and $\tilde{\mathbf{x}}_d = \text{pre}_d \setminus pa_d$ so that $p(x_d | x_1, \ldots, x_{d-1}) = p(x_d | \tilde{\mathbf{x}}_d, pa_d)$. By the product rule, we have

$$p(x_d, \tilde{\mathbf{x}}_d | \text{pa}_d) = p(x_d | \tilde{\mathbf{x}}_d, \text{pa}_d) p(\tilde{\mathbf{x}}_d | \text{pa}_d)$$
$$= k(x_d | \text{pa}_d) p(\tilde{\mathbf{x}}_d | \text{pa}_d)$$

Next sum out $\tilde{\mathbf{x}}_d$ to obtain

$$\begin{split} p(x_d | \text{pa}_d) &= \int p(x_d, \tilde{\mathbf{x}}_d | \text{pa}_d) \text{d} \tilde{\mathbf{x}}_d = k(x_d | \text{pa}_d) \int p(\tilde{\mathbf{x}}_d | \text{pa}_d) \text{d} \tilde{\mathbf{x}}_d \\ &= k(x_d | \text{pa}_d) \end{split}$$

where we have used that x_d and pa_d are not part of $\tilde{\mathbf{x}}_d$.

The factors $k(x_i | pa_i)$ equal the conditionals $p(x_i | pa_i)$ Hence:

$$p(x_d|x_1,\ldots,x_{d-1}) = p(x_d|\operatorname{pa}_d) = k(x_d|\operatorname{pa}_d)$$

Next, note that $p(x_1, \ldots, x_{d-1})$ has the same form as $p(x_1, \ldots, x_d)$: apply same procedure to all $p(x_1, \ldots, x_k)$, for smaller and smaller $k \leq d-1$

Proves that for
$$p(\mathbf{x}) = \prod_{i=1}^{d} k(x_i | pa_i)$$
:
(1) $k(x_i | pa_i) = p(x_i | pa_i)$ for $i = 1, ..., d$
(As desired!)
(2) $p(x_i | pre_i) = p(x_i | pa_i)$ for $i = 1, ..., d$
(This means that the factorisation of the DGM implies independencies, see later)

(3)
$$p(x_1,...,x_k) = \prod_{i=1}^{k} k(x_i | pa_i)$$
 fo $k = 1,...,d$

(The distr of the first k variables is given by the first k terms in the factorisation)

Note that (2) and (3) depend on the particular topological ordering chosen, e.g. it is "first k variables" in the chosen topological ordering.

Ancestral sampling

- ► This means that the DAG not only specifies the joint distribution p(x) = ∏^d_{i=1} k(x_i|pa_i) but also a sampling/data generating process.
- To generate data from $p(\mathbf{x})$:
 - 1. Pick an ordering x_1, \ldots, x_d of the random variables that is topological to G.
 - 2. x_1 does not have any parents, i.e. $pa_1 = \emptyset$.
 - 3. Following the topological ordering, sample from $k(x_i | pa_i)$, i = 1, ..., d.
- Moreover, from the results above:
 - $\triangleright x_i | \mathrm{pa}_i \sim p(x_i | \mathrm{pa}_i)$
 - (The notation means that x_i follows or is sampled from $p(x_i | pa_i)$)
 - $(x_1, \ldots, x_k) \sim p(x_1, \ldots, x_k) \text{ for all } k$ (To e.g. sample from (x_1, x_2) , you can stop the sampling after i = 2.)
- It's called ancestral sampling because we sample the parents before the children, following the arrows in the DAG.

Example

DAG:

Random variables: *a*, *z*, *q*, *e*, *h*

 $\text{Parent sets: } \text{pa}_{\textit{a}} = \text{pa}_{\textit{z}} = \varnothing, \text{pa}_{\textit{q}} = \{\textit{a}, \textit{z}\}, \text{pa}_{\textit{e}} = \{\textit{q}\}, \text{pa}_{\textit{h}} = \{\textit{z}\}.$

Directed graphical model: set of pdfs/pmfs p(a, z, q, e, h) that factorise as:

$$p(a, z, q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)$$

Example: Markov chain

DAG:

Random variables: x_1, x_2, x_3, x_4, x_5

Parent sets: $pa_1 = \emptyset, pa_2 = \{x_1\}, pa_3 = \{x_2\}, pa_4 = \{x_3\}, pa_5 = \{x_4\}.$ Directed graphical model: set of pdfs/pmfs $p(x_1, \ldots, x_5)$ that

factorise as:

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)p(x_4|x_3)p(x_5|x_4)$$

Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis) DAG: (x_1) (x_2) (x_3)

Random variables: $x_1, x_2, x_3, y_1, \ldots, y_5$

Parent sets: $pa(x_i) = \emptyset$, $pa(y_i) = \{x_1, x_2, x_3\}$ for all *i*.

Directed graphical model: set of pdfs/pmfs $p(x_1, x_2, x_3, y_1, \dots, y_5)$ that factorise as:

$$p(x_1, x_2, x_3, y_1, \dots, y_5) = p(x_1)p(x_2)p(x_3)p(y_1|x_1, x_2, x_3)$$
$$p(y_2|x_1, x_2, x_3) \dots p(y_5|x_1, x_2, x_3)$$

1. Visualising factorisations with directed acyclic graphs

- Conditional independencies simplify factors in the chain rule
- Visualisation as a directed acyclic graph
- Graph concepts
- 2. Directed graphical models
 - Definition
 - Conditionals, marginals, and ancestral sampling
 - Examples

These slides are modified from ones produced by Michael Gutmann, made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of Edinburgh 2018-2023 CC BY 4.0 © ().