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Variability

» Variability is part of nature
» Data for 3 species of iris, from Ronald Fisher (1936)

Fisher's Iris Data
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Variability

» Our handwriting is unique

» Variability leads to uncertainty: e.g. 1 vs 7or4 vs 9
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Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040
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Variability

» Variability leads to uncertainty

» Reading handwritten text in a
foreign language
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Example: Screening and diagnostic tests

» Early warning test for Alzheimer’'s disease (Scharre, 2010, 2014)

» Detects “mild cognitive impairment”

7. Copy this picture:

» Takes 10—15 minutes

» Freely available

» Assume a 70 year old man
tests positive. $. Drawing test

» Should he be concerned? - Draw a large face of a clock and place in the numbers

- Position the hands for 5 minutes after 11 o’clock

(Example from sagetest.osu.edu)
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Accuracy of the test

» Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

» 80% correct for people with impairment

impairment
detected (y=1)

02

T o

HLL)
no impairment
detected (y=0)
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Accuracy of the test

» Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

» 95% correct for people w/o impairment

impairment
detected (y=1)

[ )
w/o impairment (x=0) w

e

no impairment
detected (y=0)
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Variability implies uncertainty

» People of the same group do not have the same test results

» Test outcome is subject to variability
» The data are noisy

» Variability leads to uncertainty

» Positive test = true positive ?
» Positive test = false positive ?

» \What can we safely conclude from a positive test result?

» How should we analyse such kind of ambiguous data?
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Probabilistic approach

» The test outcomes y can be described with probabilities

sensitivity = 0.8 &
=

specificity = 0.95 <«
<~

<

<

<

<

x=1)=0.8
x=1)=0.2
x=0)=0.95
x=0)=0.05

» P(y|x): model of the test specified in terms of (conditional)

probabilities

» x € {0,1}: quantity of interest (cognitive impairment or not)
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Prior information

Among people like the patient, P(x = 1) = 5/45 ~ 11% have a
cognitive impairment (plausible range: 3% — 22%, Geda, 2014)

With impairment
p(x=1)

Without impairment
p(x=0)
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Probabilistic model

» Reality:
» properties/characteristics of the group of people like the

patient
» properties/characteristics of the test

» Probabilistic model:
> P(x =1)
> Ply=1x=1) or P(y =0|x = 1)
P(y =1|x =0) or P(y = 0|x = 0)
Fully specified by three numbers.

» A probabilistic model is an abstraction of reality that uses
probability theory to quantify the chance of uncertain events.
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If we tested the whole population




If we tested the whole population

Fraction of people who are impaired and have positive tests:

Px=1y=1)=P(y=1x=1)P(x =1) =4/45 (product rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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If we tested the whole population

Fraction of people who are not impaired but have positive tests:

P(x=0,y=1)=P(y =1|x=0)P(x =0) =2/45 (product rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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If we tested the whole population

Fraction of people where the test is positive:

Ply=1)=P(x=1,y=1)+P(x=0,y =1) =6/45 (sum rule)

With impairment
p(x=1)

Without impairment
p(x=0)
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Putting everything together

PMR 2023

» Among those with a positive test, fraction with impairment:

Py =1x=1)P(x =1) _ 4

Px=1ly=1)= — =

P(y =1) 6
» Fraction without impairment:

Py =1x=0)P(x=0) 2

P(x =0y =1) = ==

P(y =1) 6

» Equations are examples of “Bayes’ rule”.

2
3

1
3

» Positive test increased probability of cognitive impairment

from 11% (prior belief) to 67%, or from 6% to 51%.
» 51% ~ coin flip
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Probabilistic reasoning

PMR 2023

Probabilistic reasoning = probabilistic inference:
Computing the probability of an event that we have not or
cannot observe from an event that we can observe

» Unobserved/uncertain event, e.g. cognitive impairment x = 1
» Observed event = evidence = data, e.g. test result y =1

“The prior”: probability for the uncertain event before having
seen evidence, e.g. P(x = 1)

“The posterior”: probability for the uncertain event after
having seen evidence, e.g. P(x = 1|y = 1)

The posterior is computed from the prior and the evidence via
Bayes' rule.
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Key rules of probability
(1) Product rule:

Px=1Ly=1)=P(y=1x=1)P(x =1)
=P(x =1y =1)P(y = 1)

(2) Sum rule:
Py=1)=P(x=1,y=1)4+P(x=0,y =1)
Bayes’ rule (conditioning) as consequence of the product rule

o Plx=1y=1) Ply=1x=1)P(x=1)
P(x =1y =1)= Py =1 P(y = 1)

Denominator from sum rule, or sum rule and product rule

Ply=1)=P(y=1x=1)P(x =1) +P(y = 1|x = 0)P(x = 0)
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Key rules or probability

» The rules generalise to the case of multivariate random
variables (discrete or continuous)

» Consider the conditional joint probability density function
(pdf) or probability mass function (pmf) of x,y: p(x,y)

(1) Product rule:

p(x,y) = p(x|y)p(y)
= p(y[x)p(x)

(2) Sum rule:

(y) = > p(x,y) for discrete r.v.
P fP(X,y)dx for continuous r.v.

PMR 2023 20 / 27



Probabilistic modelling and reasoning

» Probabilistic modelling:

» |dentify the quantities that relate to the aspects of reality that
you wish to capture with your model.
» Consider them to be random variables, e.g. x,y, z, with a joint

pdf (pmf) p(x,y,z).
» Probabilistic reasoning:

» Assume you know that y € £ (measurement, evidence)
» Probabilistic reasoning about x then consists in computing

p(x|y € &)

or related quantities like argmax, p(x|]y € £) or posterior
expectations of some function g of x, e.g.

Elg(x) |y € €] = / g(u)p(uly € £)du
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Solution via product and sum rule (discrete-valued
variables)

Assume that all variables are discrete valued, that £ = {y,}, and
that we know p(x,y,z). We would like to know p(x|y,).

p(x,¥o)
p(Yo)

» Sum rule: p(x,¥0) = >, p(X,Y¥o,2)
> Sum rule: p(Yo) = >y P(X,¥o) = 2ox 2 P(X, Yo, Z)
» Result:

» Product rule: p(X\yo) =

S p(X,ye2)
PxIYe) = S (%, Yo, 2)
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Roadmap for PMR

p(x7yo ’z)

Assume that x,y,z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

» |ssue 1: To specify p(x,y,z), we need to specify
K39 — 1 =10%% — 1 non-negative numbers, which is

impossible.

Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x,y, z)?

PMR 2023
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Roadmap for PMR

» Issue 2: The sum in the numerator goes over the order of
K9 = 10°% non-negative numbers and the sum in the
denominator over the order of K29 = 101900 \which is

impossible to compute.

Topic 2: Exact inference Can we further exploit the
assumptions on p(x,y, z) to efficiently compute the posterior
probability or derived quantities?
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P(b=bad) = 0.02 P(f=empty) = 0.05

Fuel

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10

P(g=empty|b=bad, f=empty) = 0.99
14
P(t=nolb=good) = 0.03

P(t=no|b=bad) = 0.98

P(s=nolt=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0

Heck 1995
eckerman ( ) P(s=no| t = no, f = empty) = 1.0

Directed graphical model

U
0

N

Ising model (statistical physics)
(Undirected graphical model)
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Hidden Markov model

used for speech recognition etc.
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Roadmap for PMR

» |ssue 3: Where do the non-negative numbers p(x,y,z) come
from?

Topic 3: Learning How can we learn the numbers from data?

» [ssue 4: For some models, exact inference and learning is too
costly even after fully exploiting the assumptions made.

Topic 4: Approximate inference and learning
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2023 CC BY 4.0 ©®.
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