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These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

KL divergence — The Kullback-Leibler divergence measures the “distance” between p and
q:

KL(p||q) = Ep(x)

[
log

p(x)

q(x)

]
(1)

It satisfies: KL(p||q) = 0⇔ p = q, KL(p||q) 6= KL(q||p), KL(p||q) ≥ 0. Optimising with respect
to the first argument when the second is fixed leads to mode seeking. Optimising with respect
to the second argument when the first is fixed produces global fits (moment-matching).

ELBO — For a joint model p(x,y), the evidence lower bound (ELBO) is

Lx(q) = Eq(y|x)

[
log

p(x,y)

q(y|x)

]
(2)

where q(y|x) is the variational distribution. It can be rewritten as

log p(x)−KL(q(y|x)||p(y|x)) = Eq(y|x) log p(x|y)−KL(q(y|x)||p(y)) = Eq(y|x) log p(x,y)+H(q)

where H(q) = −Eq(y|x) [log q(y|x)] is the entropy of q. The ELBO is a lower bound on log p(x).
It is maximised when q(y|x) = p(y|x) which makes the bound tight.

EM algorithm — The expectation maximisation (EM) algorithm can be used to learn the
parameters θ of a statistical model p(v,h;θ) with latent (unobserved) variables h and visible
(observed) variables v for which we have data D. It updates the parameters θ by iterating
between the expectation (E) and the maximisation (M) step:

E-step: compute J(θ) = Ep(h|D;θold)[log p(D,h;θ)] M-step: θnew ← argmax
θ

J(θ) (3)

The update rule produces a sequence of parameters for which the log-likelihood is guaranteed
to never decrease, i.e. `(θnew) ≥ `(θold).

Amortisation — For iid data v1, . . . ,vn, the ELBO for the statistical model p(v,h;θ) is

LD =
n∑

i=1

Li(θ, q) Li(θ, q) = Lvi(θ, q) = Eq(h|vi)

[
log

p(vi,h;θ)

q(h|vi)

]
(4)

Learning n q(h|vi) is too costly when n is large. Amortisation means that the q(h|vi) are
parametrised as qφ(h|vi) = q(h;λφ(vi)), where q(h;λ) is some parametric model and λφ(v)
and its parameters φ are shared among all n data points. φ is learned by maximising LD.

Reparametrisation We can sample from distributions by deterministically transforming an-
other random variable ε drawn from some base distribution p(ε). For example, h ∼ N (h;µ, σ2)⇔
h = µ + σε with ε ∼ N (ε, 0, 1). Sampling h ∼ qφ(h|v) as h = tφ(ε,v) allows us to write the
ELBO in terms of an expectation with respect to ε and hence pull ∇φ inside the expectation
when maximising the ELBO with gradient ascent.
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VAE — The variational autoencoder (VAE) is a deep latent variable model. The model is
defined by the DAG on the left with a standard normal distribution p(h) = N (h;0, I) for h and
conditionals p(vk|h;θ) = p(vk;ηk) for the visibles vk, where ηk = ηk

θ(h) is a nonlinear mapping
called the decoder (network) that maps the latents h to the parameters η of a parametric family
{p(v;η)}η.

DAG:

h1 h2 h3

v1 v2 v3 v4 v5

• Gaussian autoencoder:

p(vk;ηk) = N (vk;mk, s
2
k), vk ∈ R

• Bernoulli VAE:

p(vk;ηk) = pvkk (1−pk)(1−vk), vk ∈ {0, 1}

The model is learned by stochastic gradient ascent on LD using amortisation and e.g. reparametri-
sation. The variational distribution is often assumed to be a factorised Gaussian qφ(h|v) =∏

kN (hk;µk(v), σ2k(v)), where the means and variances (µ1, . . . , µH , σ
2
1, . . . , σ

2
H) are outputs of

the encoder (network) λφ(v). The ELBO for a d-dimensional data point vi = (vi1, . . . , vid) is

Li(θ,φ) =
d∑

k=1

Eqφ(h|vi)

[
log p(vik;ηk

θ(h))
]

︸ ︷︷ ︸
Eqφ(h|vi) log p(vi|h)

+
1

2

H∑
k=1

(
1 + log(σ2k(vi))− σ2k(vi)− µ2k(vi)

)
︸ ︷︷ ︸

−KL(qφ(h|vi)||p(h))

(5)
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