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These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Note the difference between the notations p(x;θ) and p(x | θ). The former is a pdf/pmf of a
random variable x that is parametrised by a vector of numbers (parameters) θ. The latter is a
conditional pdf/pmf of a random variable x given information of another random variable θ.

Likelihood L(θ) — The chance that the model generates data like the observed one when
using parameter configuration θ. For iid data D = {x1, . . . ,xn}, the likelihood of the parameters
θ is

L(θ) = p(D;θ) =
n∏

i=1

p(xi;θ) (1)

Prior p(θ) — Beliefs about the plausibility of parameter values before we see any data.

Posterior p(θ | D) — Beliefs about the parameters after having seen the data. This is
proportional to the likelihood function L(θ) weighted by our prior beliefs about the parameters
p(θ)

p(θ | D) ∝ L(θ)p(θ) (2)

Parametric statistical model — A set of pdfs/pmfs indexed by parameters θ,

{p(x;θ)}θ (3)

• Parameter estimation Using D to pick the “best” parameter value θ̂ among the possible
θ – i.e. pick the “best” pdf/pmf p(x; θ̂) from the set of pdfs/pmfs {p(x;θ)}θ,

Bayesian model — Considers p(x;θ) to be conditional p(x | θ). Models the distribution of
the parameters θ, as well as the random variable x

p(x,θ) = p(x | θ)p(θ) (4)

• Bayesian inference Determine the plausibility of all possible θ in light of the observed
data – i.e. compute the posterior p(θ | D).

Maximum likelihood — The parameters θ̂ that give the largest likelihood (or log-likelihood)

θ̂ = argmax
θ

`(θ) = argmax
θ

L(θ) (5)

Sometimes this can be computed directly (as in the tutorials). However, numerical methods are
often needed for this optimisation problem, which leads to local optima.
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Factor analysis — A graphical model where statistical dependencies between the observed
variables (visibles v) is modelled through unobserved variables (latents h). In factor analysis,
the latents h are assumed to be independent Gaussians with zero mean and unit variance.

p(h) = N (h;0, I) h1 h2 h3

v1 v2 v3 v4 v5

p(v | h;θ) = N (v;Fh + c,ΨΨΨ)

v = Fh + c + ε
ε ∼ N (ε; 0,ΨΨΨ)

The covariance matrix ΨΨΨ is a diagonal matrix. Probabilistic PCA is a special case of factor
analysis, where ΨΨΨ = σ2I.

Independent component analysis — The DAG is the same as in factor analysis, but with
non-Gaussian latents (one latent may be Gaussian)

p(h) =
∏
i

p(hi)

p(v | h;θ) = N (v;Ah + c,ΨΨΨ)

Score matching — A parameter estimation method for models over continuous random
variables when the partition function is intractable. The score matching cost function Jsm(θ) is
the expectation under the data distribution p∗(x) of the squared difference between the model
score function ψ(x;θ) and the data score function ψ∗(x)

ψ(x;θ) = ∇x log p(x;θ) = ∇x log p̃(x;θ)

ψ∗(x) = ∇x log p∗(x)

Jsm(θ) =
1

2
Ep∗(x)‖ψ(x;θ)−ψ∗(x)‖2 (6)

Working with gradients removes the intractable partition function. We cannot compute the
data score function ψ∗(x) directly. However, we do not need to since under mild conditions, the
optimisation problem can be written as:

θ̂ = argmin
θ

J(θ)

J(θ) =
1

n

n∑
i=1

d∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
(7)

2


