@ R — Probabilistic Modelling and Reasoning Spring 2022
‘& informatics Exercises 6 — Notes Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Note the difference between the notations p(x;0) and p(x | €). The former is a pdf/pmf of a
random variable x that is parametrised by a vector of numbers (parameters) 6. The latter is a
conditional pdf/pmf of a random variable x given information of another random variable 6.

Likelihood L(6) — The chance that the model generates data like the observed one when
using parameter configuration 6. For iid data D = {x1,..., Xy}, the likelihood of the parameters
0 is

n

L(6) = p(D; 0) = [ [ p(xi: 0) (1)

i=1
Prior p(6) — Beliefs about the plausibility of parameter values before we see any data.
Posterior p(@ | D) — Beliefs about the parameters after having seen the data. This is

proportional to the likelihood function L(60) weighted by our prior beliefs about the parameters

p(0)
p(0 | D) o< L(6)p(0) (2)

Parametric statistical model — A set of pdfs/pmfs indexed by parameters 6,

{p(x;0)}e (3)

e Parameter estimation Using D to pick the “best” parameter value 0 among the possible
0 — i.e. pick the “best” pdf/pmf p(x; ) from the set of pdfs/pmfs {p(x;0)}g,

Bayesian model — Considers p(x;8) to be conditional p(x | @). Models the distribution of
the parameters 0, as well as the random variable x
p(x,0) =p(x | 6)p(0) (4)

¢ Bayesian inference Determine the plausibility of all possible 8 in light of the observed
data — i.e. compute the posterior p(8 | D).

Maximum likelihood — The parameters 0 that give the largest likelihood (or log-likelihood)

0 = argmax ((0) = argmax L(6) (5)
0 0
Sometimes this can be computed directly (as in the tutorials). However, numerical methods are
often needed for this optimisation problem, which leads to local optima.



Factor analysis — A graphical model where statistical dependencies between the observed
variables (visibles v) is modelled through unobserved variables (latents h). In factor analysis,
the latents h are assumed to be independent Gaussians with zero mean and unit variance.

p(v |h;0) = N(v;Fh + ¢, ¥)

v=Fh+c+e
€ ~N(e0,7)

The covariance matrix ¥ is a diagonal matrix. Probabilistic PCA is a special case of factor
analysis, where ¥ = ¢°I.

Independent component analysis — The DAG is the same as in factor analysis, but with
IlOIl—GaUSSian latents (one latent may be Gaussian)

p(b) = [Tr(h)

p(v|h;0) =N(v;Ah +c,¥)

Score matching — A parameter estimation method for models over continuous random
variables when the partition function is intractable. The score matching cost function Jgy, (0) is
the expectation under the data distribution p.(x) of the squared difference between the model
score function v (x;0) and the data score function 1, (x)

P(x;0) = Vxlogp(x;0) = Vxlog p(x; )
. (x) = Vxlog p.(x)
J

n(6) = 3y 9 [x:0) — . () (©

Working with gradients removes the intractable partition function. We cannot compute the

data score function 9, (x) directly. However, we do not need to since under mild conditions, the
optimisation problem can be written as:

6 = argmin J ()
0

n
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