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Exercises for the tutorials: 1, 3.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

p(h1:d, v1:d) = p(v1|h1)p(h1)
d∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , u < d.

(a) Use message passing to compute p(ht|v1:u) for u < t ≤ d. For the sake of concreteness,
you may consider the case d = 6, u = 2, t = 4.

(b) Use message passing to compute p(vt|v1:u) for u < t ≤ d. For the sake of concreteness, you
may consider the case d = 6, u = 2, t = 4.

Exercise 2. Viterbi algorithm

For the hidden Markov model

p(h1:t, v1:t) = p(v1|h1)p(h1)
t∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , t. Use the max-sum algorithm to derive an
iterative algorithm to compute

ĥ = argmax
h1,...,ht

p(h1:t|v1:t) (1)

Assume that the latent variables hi can take K different values, e.g. hi ∈ {0, . . . ,K − 1}. The
resulting algorithm is known as Viterbi algorithm.

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

h1 . . .

. . .

ht−1 ht . . .

. . .

hn

v1 vt−1 vt vn

We assume that have already run the alpha-recursion (filtering) and can compute p(ht|v1:t) for
all t. The goal is now to generate samples p(h1, . . . , hn|v1:n), i.e. entire trajectories (h1, . . . , hn)
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from the posterior. Note that this is not the same as sampling from the n filtering distribu-
tions p(ht|v1:t). Moreover, compared to the Viterbi algorithm, the sampling approach generates
samples from the full posterior rather than just returning the most probable state and its cor-
responding probability.

(a) Show that p(h1, . . . , hn|v1:n) forms a first-order Markov chain.

(b) Since p(h1, . . . , hn|v1:n) is a first-order Markov chain, it suffices to determine p(ht−1|ht, v1:n),
the probability mass function for ht−1 given ht and all the data v1:n. Use message passing
to show that

p(ht−1, ht|v1:n) ∝ α(ht−1)β(ht)p(ht|ht−1)p(vt|ht) (2)

(c) Show that p(ht−1|ht, v1:n) = α(ht−1)
α(ht)

p(ht|ht−1)p(vt|ht).

We thus obtain the following algorithm to generate samples from p(h1, . . . , hn|v1:n):

1. Run the alpha-recursion (filtering) to determine all α(ht) forward in time for t =
1, . . . , n.

2. Sample hn from p(hn|v1:n) ∝ α(hn)

3. Go backwards in time using

p(ht−1|ht, v1:n) =
α(ht−1)

α(ht)
p(ht|ht−1)p(vt|ht) (3)

to generate samples ht−1|ht, v1:n for t = n, . . . , 2.

This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Prediction exercise

Consider a hidden Markov model with three visibles v1, v2, v3 and three hidden variables h1, h2, h3
which can be represented with the following factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

p(h1) h1

p(h2|h1)
h2

p(h3|h2)
h3

This question is about computing the predictive probability p(v3 = 1|v1 = 1).

(a) The factor graph below represents p(h1, h2, h3, v2, v3 | v1 = 1). Provide an equation that
defines φA in terms of the factors in the factor graph above.

v2

p(v2|h2)

v3

p(v3|h3)

h1

φA
h2

p(h3|h2)
h3
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(b) Assume further that all variables are binary, hi ∈ {0, 1}, vi ∈ {0, 1}; that p(h1 = 1) = 0.5,
and that the transition and emission distributions are, for all i, given by:

p(hi+1|hi) hi+1 hi

0 0 0
1 1 0
1 0 1
0 1 1

p(vi|hi) vi hi

0.6 0 0
0.4 1 0
0.4 0 1
0.6 1 1

Compute the numerical values of the factor φA.

(d) Denote the message from variable node h2 to factor node p(h3|h2) by α(h2). Use message
passing to compute α(h2) for h2 = 0 and h2 = 1. Report the values of any intermediate
messages that need to be computed for the computation of α(h2).

(e) With α(h2) defined as above, use message passing to show that the predictive probability
p(v3 = 1|v1 = 1) can be expressed in terms of α(h2) as

p(v3 = 1|v1 = 1) =
xα(h2 = 1) + yα(h2 = 0)

α(h2 = 1) + α(h2 = 0)
(4)

and report the values of x and y.

(f) Compute the numerical value of p(v3 = 1|v1 = 1).

Exercise 5. Hidden Markov models and change of measure

We take here a change of measure perspective on the alpha-recursion.

Consider the following directed graph for a hidden Markov model where the yi correspond to
observed (visible) variables and the xi to unobserved (hidden/latent) variables.

x1 x2 x3 . . .

. . .

xn

y1 y2 y3 yn

The joint model for x = (x1, . . . , xn) and y = (y1, . . . , yn) thus is

p(x,y) = p(x1)

n∏
i=2

p(xi|xi−1)

n∏
i=1

p(yi|xi). (5)

(a) Show that

p(x1, . . . , xn, y1, . . . , yt) = f1(x1)
n∏
i=2

fi(xi|xi−1)
t∏
i=1

p(yi|xi) (6)

for t = 0, . . . , n. We take the case t = 0 to correspond to p(x1, . . . , xn),

p(x1, . . . , xn) = f1(x1)

n∏
i=2

fi(xi|xi−1). (7)
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(b) Show that p(x1, . . . , xn|y1, . . . , yt), t = 0, . . . , n, factorises as

p(x1, . . . , xn|y1, . . . , yt) ∝ p(x1)
n∏
i=2

p(xi|xi−1)
t∏
i=1

gi(xi) (8)

where gi(xi) = p(yi|xi) for a fixed value of yi, and that its normalising constant Zt equals
the likelihood p(y1, . . . , yt)

(c) Denote p(x1, . . . , xn|y1, . . . , yt) by pt(x1, . . . , xn). The index t ≤ n thus indicates the time
of the last y-variable we are conditioning on. Show the following recursion for 1 ≤ t ≤ n:

pt−1(x1, . . . , xt) =

{
p(x1) if t = 1

pt−1(x1, . . . , xt−1)p(xt|xt−1) otherwise
(extension) (9)

pt(x1, . . . , xt) =
1

Zt
pt−1(x1, . . . , xt)gt(xt) (change of measure) (10)

Zt =

∫
pt−1(xt)gt(xt)dxt (11)

By iterating from t = 1 to t = n, we can thus recursively compute p(x1, . . . , xn|y1, . . . , yn),
including its normalising constant Zn, which equals the likelihood Zn = p(y1, . . . , yn)

(d) Use the recursion above to derive the following form of the alpha recursion:

pt−1(xt−1, xt) = pt−1(xt−1)p(xt|xt−1) (extension) (12)

pt−1(xt) =

∫
pt−1(xt−1, xt)dxt−1 (marginalisation) (13)

pt(xt) =
1

Zt
pt−1(xt)gt(xt) (change of measure) (14)

Zt =

∫
pt−1(xt)gt(xt)dxt (15)

with p0(x1) = p(x1).

The term pt(xt) corresponds to α(xt) from the alpha-recursion after normalisation. As
in the lecture, we see that pt−1(xt) is a predictive distribution for xt given observations
until time t − 1. Multiplying pt−1(xt) with gt(xt) gives the new α(xt). In the lecture we
called gt(xt) = p(yt|xt) the “correction”. We see here that the correction has the effect
of a change of measure, changing the predictive distribution pt−1(xt) into the filtering
distribution pt(xt).

Exercise 6. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission
distributions. For simplicity, we assume one-dimensional hidden variables and observables. We
denote the probability density function of a Gaussian random variable x with mean µ and
variance σ2 by N (x|µ, σ2),

N (x|µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
. (16)

The transition and emission distributions are assumed to be

p(hs|hs−1) = N (hs|Ashs−1, B
2
s ) (17)

p(vs|hs) = N (vs|Cshs, D2
s). (18)
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The distribution p(h1) is assumed Gaussian with known parameters. The As, Bs, Cs, Ds are also
assumed known.

(a) Show that hs and vs as defined in the following update and observation equations

hs = Ashs−1 +Bsξs (19)

vs = Cshs +Dsηs (20)

follow the conditional distributions in (17) and (18). The random variables ξs and ηs are
independent from the other variables in the model and follow a standard normal Gaussian
distribution, e.g. ξs ∼ N (ξs|0, 1).
Hint: For two constants c1 and c2, y = c1 + c2x is Gaussian if x is Gaussian. In other
words, an affine transformation of a Gaussian is Gaussian.

The equations mean that hs is obtained by scaling hs−1 and by adding noise with variance
B2
s . The observed value vs is obtained by scaling the hidden hs and by corrupting it with

Gaussian observation noise of variance D2
s .

(b) Show that ∫
N (x|µ, σ2)N (y|Ax,B2)dx ∝ N (y|Aµ,A2σ2 +B2) (21)

Hint: While this result can be obtained by integration, an approach that avoids this is as
follows: First note that N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and
y. We can thus consider the integral to correspond to the computation of the marginal of
y from the joint. Using the equivalence of Equations (17)-(18) and (19)-(20), and the fact
that the weighted sum of two Gaussian random variables is a Gaussian random variable
then allows one to obtain the result.

(c) Show that
N (x|m1, σ

2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3) (22)

where

σ23 =

(
1

σ21
+

1

σ22

)−1

=
σ21σ

2
2

σ21 + σ22
(23)

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (24)

Hint: Work in the negative log domain.

(d) In the lecture, we have seen that p(ht|v1:t) ∝ α(ht) where α(ht) can be computed recur-
sively via the “alpha-recursion”

α(h1) = p(h1) · p(v1|h1) α(hs) = p(vs|hs)
∑
hs−1

p(hs|hs−1)α(hs−1). (25)

For continuous random variables, the sum above becomes an integral so that

α(hs) = p(vs|hs)
∫
p(hs|hs−1)α(hs−1)dhs−1. (26)

For reference, let us denote the integral by I(hs),

I(hs) =

∫
p(hs|hs−1)α(hs−1)dhs−1. (27)
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In the lecture, it was pointed out that I(hs) is proportional to the predictive distribution
p(hs|v1:s−1).

For a Gaussian prior distribution for h1 and Gaussian emission probability p(v1|h1),
α(h1) = p(h1) · p(v1|h1) ∝ p(h1|v1) is proportional to a Gaussian. We denote its mean by
µ1 and its variance by σ21 so that

α(h1) ∝ N (h1|µ1, σ21). (28)

Assuming α(hs−1) ∝ N (hs−1|µs−1, σ
2
s−1) (which holds for s = 2), use Equation (21) to

show that

I(hs) ∝ N (hs|Asµs−1, Ps) (29)

where

Ps = A2
sσ

2
s−1 +B2

s . (30)

(e) Use Equation (22) to show that

α(hs) ∝ N
(
hs|µs, σ2s

)
(31)

where

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (32)

σ2s =
PsD

2
s

PsC2
s +D2

s

(33)

(f) Show that α(hs) can be re-written as

α(hs) ∝ N
(
hs|µs, σ2s

)
(34)

where

µs = Asµs−1 +Ks (vs − CsAsµs−1) (35)

σ2s = (1−KsCs)Ps (36)

Ks =
PsCs

C2
sPs +D2

s

(37)

These are the Kalman filter equations and Ks is called the Kalman filter gain.

(g) Explain Equation (35) in non-technical terms. What happens if the variance D2
s of the

observation noise goes to zero?
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