Exercises for the tutorials: 1, 3.

the university of edinburgh

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

$$p(h_{1:d}, v_{1:d}) = p(v_1|h_1)p(h_1)\prod_{i=2}^d p(v_i|h_i)p(h_i|h_{i-1})$$

assume you have observations for v_i , $i = 1, \ldots, u < d$.

- (a) Use message passing to compute $p(h_t|v_{1:u})$ for $u < t \le d$. For the sake of concreteness, you may consider the case d = 6, u = 2, t = 4.
- (b) Use message passing to compute $p(v_t|v_{1:u})$ for $u < t \le d$. For the sake of concreteness, you may consider the case d = 6, u = 2, t = 4.

Exercise 2. Viterbi algorithm

For the hidden Markov model

$$p(h_{1:t}, v_{1:t}) = p(v_1|h_1)p(h_1)\prod_{i=2}^t p(v_i|h_i)p(h_i|h_{i-1})$$

assume you have observations for v_i , i = 1, ..., t. Use the max-sum algorithm to derive an iterative algorithm to compute

$$\hat{\mathbf{h}} = \operatorname*{argmax}_{h_1,\dots,h_t} p(h_{1:t}|v_{1:t}) \tag{1}$$

Assume that the latent variables h_i can take K different values, e.g. $h_i \in \{0, \ldots, K-1\}$. The resulting algorithm is known as Viterbi algorithm.

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

We assume that have already run the alpha-recursion (filtering) and can compute $p(h_t|v_{1:t})$ for all t. The goal is now to generate samples $p(h_1, \ldots, h_n|v_{1:n})$, i.e. entire trajectories (h_1, \ldots, h_n)

from the posterior. Note that this is not the same as sampling from the n filtering distributions $p(h_t|v_{1:t})$. Moreover, compared to the Viterbi algorithm, the sampling approach generates samples from the full posterior rather than just returning the most probable state and its corresponding probability.

- (a) Show that $p(h_1, \ldots, h_n | v_{1:n})$ forms a first-order Markov chain.
- (b) Since $p(h_1, \ldots, h_n | v_{1:n})$ is a first-order Markov chain, it suffices to determine $p(h_{t-1} | h_t, v_{1:n})$, the probability mass function for h_{t-1} given h_t and all the data $v_{1:n}$. Use message passing to show that

$$p(h_{t-1}, h_t | v_{1:n}) \propto \alpha(h_{t-1}) \beta(h_t) p(h_t | h_{t-1}) p(v_t | h_t)$$
(2)

(c) Show that $p(h_{t-1}|h_t, v_{1:n}) = \frac{\alpha(h_{t-1})}{\alpha(h_t)} p(h_t|h_{t-1}) p(v_t|h_t).$

We thus obtain the following algorithm to generate samples from $p(h_1, \ldots, h_n | v_{1:n})$:

- 1. Run the alpha-recursion (filtering) to determine all $\alpha(h_t)$ forward in time for $t = 1, \ldots, n$.
- 2. Sample h_n from $p(h_n|v_{1:n}) \propto \alpha(h_n)$
- 3. Go backwards in time using

$$p(h_{t-1}|h_t, v_{1:n}) = \frac{\alpha(h_{t-1})}{\alpha(h_t)} p(h_t|h_{t-1}) p(v_t|h_t)$$
(3)

to generate samples $h_{t-1}|h_t, v_{1:n}$ for $t = n, \ldots, 2$.

This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Prediction exercise

Consider a hidden Markov model with three visibles v_1, v_2, v_3 and three hidden variables h_1, h_2, h_3 which can be represented with the following factor graph:

This question is about computing the predictive probability $p(v_3 = 1 | v_1 = 1)$.

(a) The factor graph below represents $p(h_1, h_2, h_3, v_2, v_3 | v_1 = 1)$. Provide an equation that defines ϕ_A in terms of the factors in the factor graph above.

(b) Assume further that all variables are binary, $h_i \in \{0, 1\}$, $v_i \in \{0, 1\}$; that $p(h_1 = 1) = 0.5$, and that the transition and emission distributions are, for all *i*, given by:

$p(h_{i+1} h_i)$	h_{i+1}	h_i	$p(v_i h_i)$	v_i	h_i
0	0	0	0.6	0	0
1	1	0	0.4	1	0
1	0	1	0.4	0	1
0	1	1	0.6	1	1

Compute the numerical values of the factor ϕ_A .

- (d) Denote the message from variable node h_2 to factor node $p(h_3|h_2)$ by $\alpha(h_2)$. Use message passing to compute $\alpha(h_2)$ for $h_2 = 0$ and $h_2 = 1$. Report the values of any intermediate messages that need to be computed for the computation of $\alpha(h_2)$.
- (e) With $\alpha(h_2)$ defined as above, use message passing to show that the predictive probability $p(v_3 = 1 | v_1 = 1)$ can be expressed in terms of $\alpha(h_2)$ as

$$p(v_3 = 1|v_1 = 1) = \frac{x\alpha(h_2 = 1) + y\alpha(h_2 = 0)}{\alpha(h_2 = 1) + \alpha(h_2 = 0)}$$
(4)

and report the values of x and y.

(f) Compute the numerical value of $p(v_3 = 1 | v_1 = 1)$.

Exercise 5. Hidden Markov models and change of measure

We take here a change of measure perspective on the alpha-recursion.

Consider the following directed graph for a hidden Markov model where the y_i correspond to observed (visible) variables and the x_i to unobserved (hidden/latent) variables.

The joint model for $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ thus is

$$p(\mathbf{x}, \mathbf{y}) = p(x_1) \prod_{i=2}^{n} p(x_i | x_{i-1}) \prod_{i=1}^{n} p(y_i | x_i).$$
(5)

(a) Show that

$$p(x_1, \dots, x_n, y_1, \dots, y_t) = f_1(x_1) \prod_{i=2}^n f_i(x_i | x_{i-1}) \prod_{i=1}^t p(y_i | x_i)$$
(6)

for t = 0, ..., n. We take the case t = 0 to correspond to $p(x_1, ..., x_n)$,

$$p(x_1, \dots, x_n) = f_1(x_1) \prod_{i=2}^n f_i(x_i | x_{i-1}).$$
(7)

©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 ⊕€

(b) Show that $p(x_1, \ldots, x_n | y_1, \ldots, y_t)$, $t = 0, \ldots, n$, factorises as

$$p(x_1, \dots, x_n | y_1, \dots, y_t) \propto p(x_1) \prod_{i=2}^n p(x_i | x_{i-1}) \prod_{i=1}^t g_i(x_i)$$
 (8)

where $g_i(x_i) = p(y_i|x_i)$ for a fixed value of y_i , and that its normalising constant Z_t equals the likelihood $p(y_1, \ldots, y_t)$

(c) Denote $p(x_1, \ldots, x_n | y_1, \ldots, y_t)$ by $p_t(x_1, \ldots, x_n)$. The index $t \le n$ thus indicates the time of the last y-variable we are conditioning on. Show the following recursion for $1 \le t \le n$:

$$p_{t-1}(x_1, \dots, x_t) = \begin{cases} p(x_1) & \text{if } t = 1\\ p_{t-1}(x_1, \dots, x_{t-1})p(x_t|x_{t-1}) & \text{otherwise} \end{cases}$$
(9)

$$p_t(x_1, \dots, x_t) = \frac{1}{Z_t} p_{t-1}(x_1, \dots, x_t) g_t(x_t)$$
 (change of measure) (10)

$$Z_t = \int p_{t-1}(x_t)g_t(x_t)\mathrm{d}x_t \tag{11}$$

By iterating from t = 1 to t = n, we can thus recursively compute $p(x_1, \ldots, x_n | y_1, \ldots, y_n)$, including its normalising constant Z_n , which equals the likelihood $Z_n = p(y_1, \ldots, y_n)$

(d) Use the recursion above to derive the following form of the alpha recursion:

$$p_{t-1}(x_{t-1}, x_t) = p_{t-1}(x_{t-1})p(x_t|x_{t-1})$$
 (extension) (12)

$$p_{t-1}(x_t) = \int p_{t-1}(x_{t-1}, x_t) \mathrm{d}x_{t-1} \qquad (\text{marginalisation}) \tag{13}$$

$$p_t(x_t) = \frac{1}{Z_t} p_{t-1}(x_t) g_t(x_t)$$
 (change of measure) (14)

$$Z_t = \int p_{t-1}(x_t)g_t(x_t)\mathrm{d}x_t \tag{15}$$

with $p_0(x_1) = p(x_1)$.

The term $p_t(x_t)$ corresponds to $\alpha(x_t)$ from the alpha-recursion after normalisation. As in the lecture, we see that $p_{t-1}(x_t)$ is a predictive distribution for x_t given observations until time t-1. Multiplying $p_{t-1}(x_t)$ with $g_t(x_t)$ gives the new $\alpha(x_t)$. In the lecture we called $g_t(x_t) = p(y_t|x_t)$ the "correction". We see here that the correction has the effect of a change of measure, changing the predictive distribution $p_{t-1}(x_t)$ into the filtering distribution $p_t(x_t)$.

Exercise 6. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions. For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability density function of a Gaussian random variable x with mean μ and variance σ^2 by $\mathcal{N}(x|\mu, \sigma^2)$,

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right].$$
(16)

The transition and emission distributions are assumed to be

$$p(h_s|h_{s-1}) = \mathcal{N}(h_s|A_sh_{s-1}, B_s^2)$$
(17)

$$p(v_s|h_s) = \mathcal{N}(v_s|C_sh_s, D_s^2). \tag{18}$$

The distribution $p(h_1)$ is assumed Gaussian with known parameters. The A_s, B_s, C_s, D_s are also assumed known.

(a) Show that h_s and v_s as defined in the following update and observation equations

$$h_s = A_s h_{s-1} + B_s \xi_s \tag{19}$$

$$v_s = C_s h_s + D_s \eta_s \tag{20}$$

follow the conditional distributions in (17) and (18). The random variables ξ_s and η_s are independent from the other variables in the model and follow a standard normal Gaussian distribution, e.g. $\xi_s \sim \mathcal{N}(\xi_s|0, 1)$.

Hint: For two constants c_1 and c_2 , $y = c_1 + c_2 x$ is Gaussian if x is Gaussian. In other words, an affine transformation of a Gaussian is Gaussian.

The equations mean that h_s is obtained by scaling h_{s-1} and by adding noise with variance B_s^2 . The observed value v_s is obtained by scaling the hidden h_s and by corrupting it with Gaussian observation noise of variance D_s^2 .

(b) Show that

$$\int \mathcal{N}(x|\mu,\sigma^2)\mathcal{N}(y|Ax,B^2)\mathrm{d}x \propto \mathcal{N}(y|A\mu,A^2\sigma^2+B^2)$$
(21)

Hint: While this result can be obtained by integration, an approach that avoids this is as follows: First note that $\mathcal{N}(x|\mu, \sigma^2)\mathcal{N}(y|Ax, B^2)$ is proportional to the joint pdf of x and y. We can thus consider the integral to correspond to the computation of the marginal of y from the joint. Using the equivalence of Equations (17)-(18) and (19)-(20), and the fact that the weighted sum of two Gaussian random variables is a Gaussian random variable then allows one to obtain the result.

(c) Show that

$$\mathcal{N}(x|m_1, \sigma_1^2)\mathcal{N}(x|m_2, \sigma_2^2) \propto \mathcal{N}(x|m_3, \sigma_3^2)$$
(22)

where

$$\sigma_3^2 = \left(\frac{1}{\sigma_1^2} + \frac{1}{\sigma_2^2}\right)^{-1} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2} \tag{23}$$

$$m_3 = \sigma_3^2 \left(\frac{m_1}{\sigma_1^2} + \frac{m_2}{\sigma_2^2} \right) = m_1 + \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2} (m_2 - m_1)$$
(24)

Hint: Work in the negative log domain.

(d) In the lecture, we have seen that $p(h_t|v_{1:t}) \propto \alpha(h_t)$ where $\alpha(h_t)$ can be computed recursively via the "alpha-recursion"

$$\alpha(h_1) = p(h_1) \cdot p(v_1|h_1) \qquad \alpha(h_s) = p(v_s|h_s) \sum_{h_{s-1}} p(h_s|h_{s-1}) \alpha(h_{s-1}).$$
(25)

For continuous random variables, the sum above becomes an integral so that

$$\alpha(h_s) = p(v_s|h_s) \int p(h_s|h_{s-1})\alpha(h_{s-1}) \mathrm{d}h_{s-1}.$$
(26)

For reference, let us denote the integral by $I(h_s)$,

$$I(h_s) = \int p(h_s | h_{s-1}) \alpha(h_{s-1}) dh_{s-1}.$$
 (27)

In the lecture, it was pointed out that $I(h_s)$ is proportional to the predictive distribution $p(h_s|v_{1:s-1})$.

For a Gaussian prior distribution for h_1 and Gaussian emission probability $p(v_1|h_1)$, $\alpha(h_1) = p(h_1) \cdot p(v_1|h_1) \propto p(h_1|v_1)$ is proportional to a Gaussian. We denote its mean by μ_1 and its variance by σ_1^2 so that

$$\alpha(h_1) \propto \mathcal{N}(h_1|\mu_1, \sigma_1^2). \tag{28}$$

Assuming $\alpha(h_{s-1}) \propto \mathcal{N}(h_{s-1}|\mu_{s-1}, \sigma_{s-1}^2)$ (which holds for s = 2), use Equation (21) to show that

$$I(h_s) \propto \mathcal{N}(h_s | A_s \mu_{s-1}, P_s) \tag{29}$$

where

$$P_s = A_s^2 \sigma_{s-1}^2 + B_s^2. ag{30}$$

(e) Use Equation (22) to show that

$$\alpha(h_s) \propto \mathcal{N}\left(h_s | \mu_s, \sigma_s^2\right) \tag{31}$$

where

$$\mu_s = A_s \mu_{s-1} + \frac{P_s C_s}{C_s^2 P_s + D_s^2} \left(v_s - C_s A_s \mu_{s-1} \right)$$
(32)

$$\sigma_s^2 = \frac{P_s D_s^2}{P_s C_s^2 + D_s^2}$$
(33)

(f) Show that $\alpha(h_s)$ can be re-written as

$$\alpha(h_s) \propto \mathcal{N}\left(h_s | \mu_s, \sigma_s^2\right) \tag{34}$$

where

$$\mu_s = A_s \mu_{s-1} + K_s \left(v_s - C_s A_s \mu_{s-1} \right) \tag{35}$$

$$\sigma_s^2 = (1 - K_s C_s) P_s \tag{36}$$

$$K_{s} = \frac{P_{s}C_{s}}{C_{s}^{2}P_{s} + D_{s}^{2}}$$
(37)

These are the Kalman filter equations and K_s is called the Kalman filter gain.

(g) Explain Equation (35) in non-technical terms. What happens if the variance D_s^2 of the observation noise goes to zero?