Exercises for the tutorials: 1, 3.
The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

$$
p\left(h_{1: d}, v_{1: d}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{d} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

assume you have observations for $v_{i}, i=1, \ldots, u<d$.
(a) Use message passing to compute $p\left(h_{t} \mid v_{1: u}\right)$ for $u<t \leq d$. For the sake of concreteness, you may consider the case $d=6, u=2, t=4$.
(b) Use message passing to compute $p\left(v_{t} \mid v_{1: u}\right)$ for $u<t \leq d$. For the sake of concreteness, you may consider the case $d=6, u=2, t=4$.

Exercise 2. Viterbi algorithm

For the hidden Markov model

$$
p\left(h_{1: t}, v_{1: t}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{t} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

assume you have observations for $v_{i}, i=1, \ldots, t$. Use the max-sum algorithm to derive an iterative algorithm to compute

$$
\begin{equation*}
\hat{\mathbf{h}}=\underset{h_{1}, \ldots, h_{t}}{\operatorname{argmax}} p\left(h_{1: t} \mid v_{1: t}\right) \tag{1}
\end{equation*}
$$

Assume that the latent variables h_{i} can take K different values, e.g. $h_{i} \in\{0, \ldots, K-1\}$. The resulting algorithm is known as Viterbi algorithm.

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

We assume that have already run the alpha-recursion (filtering) and can compute $p\left(h_{t} \mid v_{1: t}\right)$ for all t. The goal is now to generate samples $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$, i.e. entire trajectories $\left(h_{1}, \ldots, h_{n}\right)$
from the posterior. Note that this is not the same as sampling from the n filtering distributions $p\left(h_{t} \mid v_{1: t}\right)$. Moreover, compared to the Viterbi algorithm, the sampling approach generates samples from the full posterior rather than just returning the most probable state and its corresponding probability.
(a) Show that $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ forms a first-order Markov chain.
(b) Since $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ is a first-order Markov chain, it suffices to determine $p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)$, the probability mass function for h_{t-1} given h_{t} and all the data $v_{1: n}$. Use message passing to show that

$$
\begin{equation*}
p\left(h_{t-1}, h_{t} \mid v_{1: n}\right) \propto \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) \tag{2}
\end{equation*}
$$

(c) Show that $p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)=\frac{\alpha\left(h_{t-1}\right)}{\alpha\left(h_{t}\right)} p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)$.

We thus obtain the following algorithm to generate samples from $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$:

1. Run the alpha-recursion (filtering) to determine all $\alpha\left(h_{t}\right)$ forward in time for $t=$ $1, \ldots, n$.
2. Sample h_{n} from $p\left(h_{n} \mid v_{1: n}\right) \propto \alpha\left(h_{n}\right)$
3. Go backwards in time using

$$
\begin{equation*}
p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)=\frac{\alpha\left(h_{t-1}\right)}{\alpha\left(h_{t}\right)} p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) \tag{3}
\end{equation*}
$$

to generate samples $h_{t-1} \mid h_{t}, v_{1: n}$ for $t=n, \ldots, 2$.
This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Prediction exercise

Consider a hidden Markov model with three visibles v_{1}, v_{2}, v_{3} and three hidden variables h_{1}, h_{2}, h_{3} which can be represented with the following factor graph:

This question is about computing the predictive probability $p\left(v_{3}=1 \mid v_{1}=1\right)$.
(a) The factor graph below represents $p\left(h_{1}, h_{2}, h_{3}, v_{2}, v_{3} \mid v_{1}=1\right)$. Provide an equation that defines ϕ_{A} in terms of the factors in the factor graph above.

(b) Assume further that all variables are binary, $h_{i} \in\{0,1\}, v_{i} \in\{0,1\}$; that $p\left(h_{1}=1\right)=0.5$, and that the transition and emission distributions are, for all i, given by:

$p\left(h_{i+1} \mid h_{i}\right)$	h_{i+1}	h_{i}
0	0	0
1	1	0
1	0	1
0	1	1

$p\left(v_{i} \mid h_{i}\right)$	v_{i}	h_{i}
0.6	0	0
0.4	1	0
0.4	0	1
0.6	1	1

Compute the numerical values of the factor ϕ_{A}.
(d) Denote the message from variable node h_{2} to factor node $p\left(h_{3} \mid h_{2}\right)$ by $\alpha\left(h_{2}\right)$. Use message passing to compute $\alpha\left(h_{2}\right)$ for $h_{2}=0$ and $h_{2}=1$. Report the values of any intermediate messages that need to be computed for the computation of $\alpha\left(h_{2}\right)$.
(e) With $\alpha\left(h_{2}\right)$ defined as above, use message passing to show that the predictive probability $p\left(v_{3}=1 \mid v_{1}=1\right)$ can be expressed in terms of $\alpha\left(h_{2}\right)$ as

$$
\begin{equation*}
p\left(v_{3}=1 \mid v_{1}=1\right)=\frac{x \alpha\left(h_{2}=1\right)+y \alpha\left(h_{2}=0\right)}{\alpha\left(h_{2}=1\right)+\alpha\left(h_{2}=0\right)} \tag{4}
\end{equation*}
$$

and report the values of x and y.
(f) Compute the numerical value of $p\left(v_{3}=1 \mid v_{1}=1\right)$.

Exercise 5. Hidden Markov models and change of measure

We take here a change of measure perspective on the alpha-recursion.
Consider the following directed graph for a hidden Markov model where the y_{i} correspond to observed (visible) variables and the x_{i} to unobserved (hidden/latent) variables.

The joint model for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ thus is

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{y})=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \tag{5}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{n} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \tag{6}
\end{equation*}
$$

for $t=0, \ldots, n$. We take the case $t=0$ to correspond to $p\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{n} f_{i}\left(x_{i} \mid x_{i-1}\right) \tag{7}
\end{equation*}
$$

(b) Show that $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right), t=0, \ldots, n$, factorises as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right) \propto p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} g_{i}\left(x_{i}\right) \tag{8}
\end{equation*}
$$

where $g_{i}\left(x_{i}\right)=p\left(y_{i} \mid x_{i}\right)$ for a fixed value of y_{i}, and that its normalising constant Z_{t} equals the likelihood $p\left(y_{1}, \ldots, y_{t}\right)$
(c) Denote $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right)$ by $p_{t}\left(x_{1}, \ldots, x_{n}\right)$. The index $t \leq n$ thus indicates the time of the last y-variable we are conditioning on. Show the following recursion for $1 \leq t \leq n$:

$$
\begin{array}{rll}
p_{t-1}\left(x_{1}, \ldots, x_{t}\right) & = \begin{cases}p\left(x_{1}\right) & \text { if } t=1 \\
p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) & \text { otherwise }\end{cases} & \text { (extension) } \\
p_{t}\left(x_{1}, \ldots, x_{t}\right) & =\frac{1}{Z_{t}} p_{t-1}\left(x_{1}, \ldots, x_{t}\right) g_{t}\left(x_{t}\right) & \text { (change of measure) } \\
Z_{t} & =\int p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{t} & \tag{11}
\end{array}
$$

By iterating from $t=1$ to $t=n$, we can thus recursively compute $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)$, including its normalising constant Z_{n}, which equals the likelihood $Z_{n}=p\left(y_{1}, \ldots, y_{n}\right)$
(d) Use the recursion above to derive the following form of the alpha recursion:

$$
\begin{align*}
p_{t-1}\left(x_{t-1}, x_{t}\right) & =p_{t-1}\left(x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) & & \text { (extension) } \tag{12}\\
p_{t-1}\left(x_{t}\right) & =\int p_{t-1}\left(x_{t-1}, x_{t}\right) \mathrm{d} x_{t-1} & & \text { (marginalisation) } \tag{13}\\
p_{t}\left(x_{t}\right) & =\frac{1}{Z_{t}} p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) & & \text { (change of measure) } \tag{14}\\
Z_{t} & =\int p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{t} & & \tag{15}
\end{align*}
$$

with $p_{0}\left(x_{1}\right)=p\left(x_{1}\right)$.
The term $p_{t}\left(x_{t}\right)$ corresponds to $\alpha\left(x_{t}\right)$ from the alpha-recursion after normalisation. As in the lecture, we see that $p_{t-1}\left(x_{t}\right)$ is a predictive distribution for x_{t} given observations until time $t-1$. Multiplying $p_{t-1}\left(x_{t}\right)$ with $g_{t}\left(x_{t}\right)$ gives the new $\alpha\left(x_{t}\right)$. In the lecture we called $g_{t}\left(x_{t}\right)=p\left(y_{t} \mid x_{t}\right)$ the "correction". We see here that the correction has the effect of a change of measure, changing the predictive distribution $p_{t-1}\left(x_{t}\right)$ into the filtering distribution $p_{t}\left(x_{t}\right)$.

Exercise 6. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions. For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability density function of a Gaussian random variable x with mean μ and variance σ^{2} by $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$,

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \tag{16}
\end{equation*}
$$

The transition and emission distributions are assumed to be

$$
\begin{align*}
p\left(h_{s} \mid h_{s-1}\right) & =\mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \tag{17}\\
p\left(v_{s} \mid h_{s}\right) & =\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) \tag{18}
\end{align*}
$$

The distribution $p\left(h_{1}\right)$ is assumed Gaussian with known parameters. The $A_{s}, B_{s}, C_{s}, D_{s}$ are also assumed known.
(a) Show that h_{s} and v_{s} as defined in the following update and observation equations

$$
\begin{align*}
h_{s} & =A_{s} h_{s-1}+B_{s} \xi_{s} \tag{19}\\
v_{s} & =C_{s} h_{s}+D_{s} \eta_{s} \tag{20}
\end{align*}
$$

follow the conditional distributions in (17) and (18). The random variables ξ_{s} and η_{s} are independent from the other variables in the model and follow a standard normal Gaussian distribution, e.g. $\xi_{s} \sim \mathcal{N}\left(\xi_{s} \mid 0,1\right)$.
Hint: For two constants c_{1} and $c_{2}, y=c_{1}+c_{2} x$ is Gaussian if x is Gaussian. In other words, an affine transformation of a Gaussian is Gaussian.
The equations mean that h_{s} is obtained by scaling h_{s-1} and by adding noise with variance B_{s}^{2}. The observed value v_{s} is obtained by scaling the hidden h_{s} and by corrupting it with Gaussian observation noise of variance D_{s}^{2}.
(b) Show that

$$
\begin{equation*}
\int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right) \mathrm{d} x \propto \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{21}
\end{equation*}
$$

Hint: While this result can be obtained by integration, an approach that avoids this is as follows: First note that $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y. We can thus consider the integral to correspond to the computation of the marginal of y from the joint. Using the equivalence of Equations (17)-(18) and (19)-(20), and the fact that the weighted sum of two Gaussian random variables is a Gaussian random variable then allows one to obtain the result.
(c) Show that

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) \tag{22}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{3}^{2}=\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-1}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{23}\\
& m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{24}
\end{align*}
$$

Hint: Work in the negative log domain.
(d) In the lecture, we have seen that $p\left(h_{t} \mid v_{1: t}\right) \propto \alpha\left(h_{t}\right)$ where $\alpha\left(h_{t}\right)$ can be computed recursively via the "alpha-recursion"

$$
\begin{equation*}
\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \quad \alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) . \tag{25}
\end{equation*}
$$

For continuous random variables, the sum above becomes an integral so that

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} . \tag{26}
\end{equation*}
$$

For reference, let us denote the integral by $I\left(h_{s}\right)$,

$$
\begin{equation*}
I\left(h_{s}\right)=\int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} \tag{27}
\end{equation*}
$$

In the lecture, it was pointed out that $I\left(h_{s}\right)$ is proportional to the predictive distribution $p\left(h_{s} \mid v_{1: s-1}\right)$.
For a Gaussian prior distribution for h_{1} and Gaussian emission probability $p\left(v_{1} \mid h_{1}\right)$, $\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \propto p\left(h_{1} \mid v_{1}\right)$ is proportional to a Gaussian. We denote its mean by μ_{1} and its variance by σ_{1}^{2} so that

$$
\begin{equation*}
\alpha\left(h_{1}\right) \propto \mathcal{N}\left(h_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) \tag{28}
\end{equation*}
$$

Assuming $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$ (which holds for $s=2$), use Equation (21) to show that

$$
\begin{equation*}
I\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}=A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2} \tag{30}
\end{equation*}
$$

(e) Use Equation (22) to show that

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{31}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{32}\\
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{33}
\end{align*}
$$

(f) Show that $\alpha\left(h_{s}\right)$ can be re-written as

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{35}\\
\sigma_{s}^{2} & =\left(1-K_{s} C_{s}\right) P_{s} \tag{36}\\
K_{s} & =\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}} \tag{37}
\end{align*}
$$

These are the Kalman filter equations and K_{s} is called the Kalman filter gain.
(g) Explain Equation (35) in non-technical terms. What happens if the variance D_{s}^{2} of the observation noise goes to zero?

