
Probabilistic Modelling and Reasoning

Solutions 5
Spring 2022

Michael Gutmann

Exercises for the tutorials: 1, 3.

The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

p(h1:d, v1:d) = p(v1|h1)p(h1)

d∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , u < d.

(a) Use message passing to compute p(ht|v1:u) for u < t ≤ d. For the sake of concreteness, you may
consider the case d = 6, u = 2, t = 4.

Solution. The factor graph for d = 6, u = 2, with messages that are required for the
computation of p(ht|v1:u) for t = 4, is as follows.

φ1

h1

φ2

h2

p(h3|h2)

h3

p(h4|h3)

h4

p(h5|h4)

h5

p(h6|h5)

h6

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

↑

↑

↑

↑

The messages from the unobserved visibles vi to their corresponding hi, e.g. v3 to h3, are
all one. Moreover, the message from the p(h5|h4) node to h4 equals one as well. This is
because all involved factors, p(vi|hi) and p(hi|hi−1), sum to one. Hence the factor graph
reduces to a chain:

φ1
h1

φ2
h2

p(h3|h2)
h3

p(h4|h3)
h4

→ → → →

Since the variable nodes copy the messages in case of a chain, we only show the factor-to-
variable messages.

The graph shows that we are essentially in the same situation as in filtering, with the
difference that we use the factors p(hs|hs−1) for s ≥ u+ 1. Hence, we can use filtering to
compute the messages until time s = u and then compute the further messages with the
p(hs|hs−1) as factors. This gives the following algorithm:

1. Compute α(hu) by filtering.

2. For s = u+ 1, . . . , t, compute

α(hs) =
∑
hs−1

p(hs|hs−1)α(hs−1) (S.1)

1 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

3. The required predictive distribution is

p(ht|v1:u) =
1

Z
α(ht) Z =

∑
ht

α(ht) (S.2)

For s ≥ u+ 1, we have that∑
hs

α(hs) =
∑
hs

∑
hs−1

p(hs|hs−1)α(hs−1) (S.3)

=
∑
hs−1

α(hs−1) (S.4)

since p(hs|hs−1) is normalised. This means that the normalising constant Z above equals

Z =
∑
hu

α(hu) = p(v1:u) (S.5)

which is the likelihood.

For filtering, we have seen that α(hs) ∝ p(hs|v1:s), s ≤ u. The α(hs) for all s > u are
proportional to p(hs|v1:u). This may be seen by noting that the above arguments hold for
any t > u.

(b) Use message passing to compute p(vt|v1:u) for u < t ≤ d. For the sake of concreteness, you may
consider the case d = 6, u = 2, t = 4.

Solution. The factor graph for d = 6, u = 2, with messages that are required for the
computation of p(vt|v1:u) for t = 4, is as follows.

φ1

h1

φ2

h2

p(h3|h2)

h3

p(h4|h3)

h4

p(h5|h4)

h5

p(h6|h5)

h6

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↓

↓

↑

↑

↑

↑

Due to the normalised factors, as above, the messages to the right of ht are all one.
Moreover the messages that go up from the vi to the hi, i 6= t, are also all one. Hence the
graph simplifies to a chain.

φ1
h1

φ2
h2

p(h3|h2)
h3

p(h4|h3)
h4

p(v4|h4)
v4

→ → → → →

The message in blue is proportional to p(ht|v1:u) computed in question (a). Thus assume
that we have computed p(ht|v1:u). The predictive distribution on the level of the visibles
thus is

p(vt|v1:u) =
∑
ht

p(vt|ht)p(ht|v1:u). (S.6)

This follows from message passing since the last node (h4 in the graph) just copies the
(normalised) message and the next factor equals p(vt|ht).

2 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

An alternative derivation follows from basic definitions and operations, together with the
independencies in HMMs:

(sum rule) p(vt|v1:u) =
∑
ht

p(vt, ht|v1:u) (S.7)

(product rule) =
∑
ht

p(vt|ht, v1:u)p(ht|v1:u) (S.8)

(vt ⊥⊥ v1:u | ht) =
∑
ht

p(vt|ht)p(ht|v1:u) (S.9)

Exercise 2. Viterbi algorithm

For the hidden Markov model

p(h1:t, v1:t) = p(v1|h1)p(h1)

t∏
i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , t. Use the max-sum algorithm to derive an iterative
algorithm to compute

ĥ = argmax
h1,...,ht

p(h1:t|v1:t) (1)

Assume that the latent variables hi can take K different values, e.g. hi ∈ {0, . . . ,K − 1}. The resulting
algorithm is known as Viterbi algorithm.

Solution. We first form the factors

φ1(h1) = p(v1|h1)p(h1) φ2(h1, h2) = p(v2|h2)p(h2|h1) (S.10)

. . . φt(ht−1, ht) = p(vt|ht)p(ht|ht−1) (S.11)

where the vi are known and fixed. The posterior p(h1, . . . , ht|v1, . . . , vt) is then represented by
the following factor graph (assuming t = 4).

φ1
h1

φ2
h2

φ3
h3

φ4
h4

For the max-sum algorithm, we here choose ht to be the root. We thus initialise the algorithm
with γφ1→h1(h1) = log φ1(h1) = log p(v1|h1) + log p(h1) and then compute the messages from
left to right, moving from the leaf φ1 to the root ht.

Since we are dealing with a chain, the variable nodes, much like in the sum-product algorithm,
just copy the incoming messages. It thus suffices to compute the factor to variable messages
shown in the graph, and then backtrack to h1.

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ → → →

3 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

With γhi−1→φi(hi−1) = γφi−1→hi−1
(hi−1), the factor-to-variable update equation is

γφi→hi(hi) = max
hi−1

log φi(hi−1, hi) + γhi−1→φi(hi−1) (S.12)

= max
hi−1

log φi(hi−1, hi) + γφi−1→hi−1
(hi−1) (S.13)

To simplify notation, denote γφi→hi(hi) by Vi(hi). We thus have

V1(h1) = log p(v1|h1) + log p(h1) (S.14)

Vi(hi) = max
hi−1

log φi(hi−1, hi) + Vi−1(hi−1) i = 2, . . . , t (S.15)

In general, V1(h1) and Vi(hi) are functions that depend on h1 and hi, respectively. Assuming
that the hi can take on the values 0, . . . ,K − 1, the above equations can be written as

v1,k = log p(v1|k) + log p(k) k = 0, . . . ,K − 1 (S.16)

vi,k = max
m∈0,...,K−1

log φi(m, k) + vi−1,m k = 0, . . . ,K − 1, i = 2, . . . , t, (S.17)

At the end of the algorithm, we thus have a t×K matrix V with elements vi,k.

The maximisation can be performed by computing the temporary matrix A (via broadcast-
ing) where the (m, k)-th element is log φi(m, k) + vi−1,m. Maximisation then corresponds to
determining the maximal value in each column.

To support the backtracking, when we compute Vi(hi) by maximising over hi−1, we compute at
the same time the look-up table

γ∗i (hi) = argmax
hi−1

log φi(hi−1, hi) + Vi−1(hi−1) (S.18)

When hi takes on the values 0, . . . ,K − 1, this can be written as

γ∗i,k = argmax
m∈0,...,K−1

log φi(m, k) + vi−1,m (S.19)

This is the (row) index of the maximal element in each column of the temporary matrix A.

After computing vt,k and γ∗t,k, we then perform backtracking via

ĥt = argmax
k

vt,k (S.20)

ĥi = γ∗
i+1,ĥi+1

i = t− 1, . . . , 1 (S.21)

This gives recursively ĥ = (ĥ1, . . . , ĥt) = argmaxh1,...,ht p(h1:t|v1:t).

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

h1 . . .

. . .

ht−1 ht . . .

. . .

hn

v1 vt−1 vt vn

4 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

We assume that have already run the alpha-recursion (filtering) and can compute p(ht|v1:t) for all t. The
goal is now to generate samples p(h1, . . . , hn|v1:n), i.e. entire trajectories (h1, . . . , hn) from the posterior.
Note that this is not the same as sampling from the n filtering distributions p(ht|v1:t). Moreover, compared
to the Viterbi algorithm, the sampling approach generates samples from the full posterior rather than just
returning the most probable state and its corresponding probability.

(a) Show that p(h1, . . . , hn|v1:n) forms a first-order Markov chain.

Solution. There are several ways to show this. The simplest is to notice that the undi-
rected graph for the hidden Markov model is the same as the DAG but with the arrows
removed as there are no colliders in the DAG. Moreover, conditioning corresponds to re-
moving nodes from an undirected graph. This leaves us with a chain that connects the
hi.

h1 h2 h3 . . . hn

By graph separation, we see that p(h1, . . . , hn|v1:n) forms a first-order Markov chain so
that e.g. h1:t−1 ⊥⊥ ht+1:n|ht (past independent from the future given the present).

(b) Since p(h1, . . . , hn|v1:n) is a first-order Markov chain, it suffices to determine p(ht−1|ht, v1:n), the
probability mass function for ht−1 given ht and all the data v1:n. Use message passing to show that

p(ht−1, ht|v1:n) ∝ α(ht−1)β(ht)p(ht|ht−1)p(vt|ht) (2)

Solution. Since all visibles are in the conditioning set, i.e. assumed observed, we can
represent the conditional model p(h1, . . . , hn|v1:n) as a chain factor tree, e.g. as follows in
case of n = 4

φ1
h1

φ2
h2

φ3
h3

φ4
h4

Combining the emission distributions p(vs|hs) (and marginal p(h1)) with the transition
distributions p(hs|hs−1) we obtain the factors

φ1(h1) = p(h1)p(v1|h1) (S.22)

φs(hs−1, hs) = p(hs|hs−1)p(vs|hs) for t = 2, . . . , n (S.23)

We see from the factor tree that ht−1 and ht are neighbours, being attached to the same
factor node φt(ht−1, ht), e.g. φ3 in case of p(h2, h3|v1:4).
By the rules of message passing, the joint p(ht−1, ht|v1:n) is thus proportional to φt times
the messages into φt. The following graph shows the messages for the case of p(h2, h3|v1:4).

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ ←

Since the variable nodes only receive single messages from any direction, they copy the
messages so that the messages into φt are given by α(ht−1) and β(ht) shown below in red
and blue, respectively.

5 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ ←

Hence,

p(ht−1, ht|v1:n) ∝ α(ht−1)β(ht)φt(ht−1, ht) (S.24)

∝ α(ht−1)β(ht)p(ht|ht−1)p(vt|ht) (S.25)

which is the result that we want to show.

(c) Show that p(ht−1|ht, v1:n) = α(ht−1)
α(ht)

p(ht|ht−1)p(vt|ht).

Solution. The conditional p(ht−1|ht, v1:n) can be written as the ratio

p(ht−1|ht, v1:n) =
p(ht−1, ht|v1:n)

p(ht|v1:n)
. (S.26)

Above, we have shown that the numerator satisfies

p(ht−1, ht|v1:n) ∝ α(ht−1)β(ht)p(ht|ht−1)p(vt|ht). (S.27)

The denominator p(ht|v1:n) is proportional to α(ht)β(ht) since it is the smoothing distri-
bution than can be determined via the alpha-beta recursion.

Normally, we needed to sum the messages over all values of (ht−1, ht) to find the normalising
constant of the numerator. For the denominator, we had to sum over all values of ht. Next,
I will argue qualitatively that this summation is not needed; the normalising constants are
both equal to p(v1:t). A more mathematical argument is given below.

We started with a factor graph and factors that represent the joint p(h1:n, v1:n). The
conditional p(h1:n, v1:n) equals

p(h1:n|v1:n) =
p(h1:n, v1:n)

p(v1:n)
(S.28)

Message passing is variable elimination. Hence, when computing p(ht|v1:n) as α(ht)β(ht)
from a factor graph for p(h1:n, v1:n), we only need to divide by p(v1:n) for normalisation;
explicitly summing out ht is not needed. In other words,

p(ht|v1:n) =
α(ht)β(ht)

p(v1:n)
. (S.29)

Similarly, p(ht−1, ht|v1:n) is also obtained from (S.28) by marginalisation/variable elimi-
nation. Again, when computing p(ht−1, ht|v1:n) as α(ht−1)β(ht)p(ht|ht−1)p(vt|ht) from a
factor graph for p(h1:n, v1:n), we do not need to explicitly sum over all values of ht and ht−1
for normalisation. The definition of the factors in the factor graph together with (S.28)
shows that we can simply divide by p(v1:n). This gives

p(ht−1, ht|v1:n) =
1

p(v1:n)
α(ht−1)β(ht)p(ht|ht−1)p(vt|ht). (S.30)

The desired conditional thus is

p(ht−1|ht, v1:n) =
p(ht−1, ht|v1:n)

p(ht|v1:n)
(S.31)

=
α(ht−1)β(ht)p(ht|ht−1)p(vt|ht)

α(ht)β(ht)
(S.32)

=
α(ht−1)p(ht|ht−1)p(vt|ht)

α(ht)
(S.33)

6 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

which is the result that we wanted to show. Note that β(ht) cancels out and that
p(ht−1|ht, v1:n) only involves the α’s, the (forward) transition distribution p(ht|ht−1) and
the emission distribution at time t.

Alternative solution: An alternative, more mathematical solution is as follows. The con-
ditional p(ht−1|ht, v1:n) can be written as the ratio

p(ht−1|ht, v1:n) =
p(ht−1, ht|v1:n)

p(ht|v1:n)
. (S.34)

We first determine the denominator. From the properties of the alpha and beta recursion,
we know that

α(ht) = p(ht, v1:t) β(ht) = p(vt+1:n|ht) (S.35)

Using that vt+1:n ⊥⊥ v1:t|ht, we can thus express the denominator p(ht|v1:n) as

p(ht|v1:n) =
p(ht, v1:n)

p(v1:n)
(S.36)

=
p(ht, v1:t)p(vt+1:n|ht)

p(v1:n)
(S.37)

=
α(ht)β(ht)

p(v1:n)
(S.38)

For the numerator, we have

p(ht−1, ht|v1:n) =
p(ht−1, ht, v1:n)

p(v1:n)
(S.39)

=
p(ht−1, v1:t−1, ht, vt:n)

p(v1:n)
(S.40)

=
p(ht−1, v1:t−1)p(ht, vt:n|ht−1, v1:t−1)

p(v1:n)
(S.41)

=
p(ht−1, v1:t−1)p(ht, vt:n|ht−1)

p(v1:n)
(using ht, v1:t ⊥⊥ v1:t−1|ht−1) (S.42)

=
α(ht−1)p(ht, vt:n|ht−1)

p(v1:n)
(using α(ht−1) = p(ht−1, v1:t−1)) (S.43)

=
α(ht−1)p(vt|ht, ht−1, vt+1:n)p(ht, vt+1:n|ht−1)

p(v1:n)
(S.44)

=
α(ht−1)p(vt|ht)p(ht, vt+1:n|ht−1)

p(v1:n)
(using vt ⊥⊥ ht−1, vt+1:n|ht) (S.45)

=
α(ht−1)p(vt|ht)p(ht|ht−1)p(vt+1:n|ht−1, ht)

p(v1:n)
(S.46)

=
α(ht−1)p(vt|ht)p(ht|ht−1)p(vt+1:n|ht)

p(v1:n)
(using vt+1:n ⊥⊥ ht−1|ht)

(S.47)

=
α(ht−1)p(vt|ht)p(ht|ht−1)β(ht)

p(v1:n)
(using β(ht) = p(vt+1:n|ht)) (S.48)

(S.49)

7 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

The desired conditional thus is

p(ht−1|ht, v1:n) =
p(ht−1, ht|v1:n)

p(ht|v1:n)
(S.50)

=
α(ht−1)β(ht)p(ht|ht−1)p(vt|ht)

α(ht)β(ht)
(S.51)

=
α(ht−1)p(ht|ht−1)p(vt|ht)

α(ht)
(S.52)

which is the result that we wanted to show.

We thus obtain the following algorithm to generate samples from p(h1, . . . , hn|v1:n):

1. Run the alpha-recursion (filtering) to determine all α(ht) forward in time for t = 1, . . . , n.

2. Sample hn from p(hn|v1:n) ∝ α(hn)

3. Go backwards in time using

p(ht−1|ht, v1:n) =
α(ht−1)

α(ht)
p(ht|ht−1)p(vt|ht) (3)

to generate samples ht−1|ht, v1:n for t = n, . . . , 2.

This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Prediction exercise

Consider a hidden Markov model with three visibles v1, v2, v3 and three hidden variables h1, h2, h3 which
can be represented with the following factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

p(h1) h1

p(h2|h1)
h2

p(h3|h2)
h3

This question is about computing the predictive probability p(v3 = 1|v1 = 1).

(a) The factor graph below represents p(h1, h2, h3, v2, v3 | v1 = 1). Provide an equation that defines φA
in terms of the factors in the factor graph above.

v2

p(v2|h2)

v3

p(v3|h3)

h1

φA
h2

p(h3|h2)
h3

8 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Solution. φA(h1, h2) ∝ p(v1|h1)p(h1)p(h2|h1) with v1 = 1.

(b) Assume further that all variables are binary, hi ∈ {0, 1}, vi ∈ {0, 1}; that p(h1 = 1) = 0.5, and
that the transition and emission distributions are, for all i, given by:

p(hi+1|hi) hi+1 hi

0 0 0
1 1 0
1 0 1
0 1 1

p(vi|hi) vi hi

0.6 0 0
0.4 1 0
0.4 0 1
0.6 1 1

Compute the numerical values of the factor φA.

(c) Given the definition of the transition and emission probabilities, we have φA(h1, h2) = 0
if h1 = h2. For h1 = 0, h2 = 1, we obtain

φA(h1 = 0, h2 = 1) = p(v1 = 1|h1 = 0)p(h1 = 0)p(h2 = 1|h1 = 0) (S.53)

= 0.4 · 0.5 · 1 (S.54)

=
4

10
· 1

2
(S.55)

=
2

10
= 0.2 (S.56)

For h1 = 1, h2 = 0, we obtain

φA(h1 = 1, h2 = 0) = p(v1 = 1|h1 = 1)p(h1 = 1)p(h2 = 0|h1 = 1) (S.57)

= 0.6 · 0.5 · 1 (S.58)

=
6

10
· 1

2
(S.59)

=
3

10
= 0.3 (S.60)

Hence

φA(h1, h2) h1 h2

0 0 0
0.3 1 0
0.2 0 1
0 1 1

(d) Denote the message from variable node h2 to factor node p(h3|h2) by α(h2). Use message passing
to compute α(h2) for h2 = 0 and h2 = 1. Report the values of any intermediate messages that need
to be computed for the computation of α(h2).

9 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Solution. The message from h1 to φA is one. The message from φA to h2 is

µφA→h2(h2 = 0) =
∑
h1

φA(h1, h2 = 0) (S.61)

= 0.3 (S.62)

µφA→h2(h2 = 1) =
∑
h1

φA(h1, h2 = 1) (S.63)

= 0.2 (S.64)

Since v2 is not observed and p(v2|h2) normalised, the message from p(v2|h2) to h2 equals
one.

This means that the message from h2 to p(h3|h2), which is α(h2) equals µφA→h2(h2), i.e.

α(h2 = 0) = 0.3 (S.65)

α(h2 = 1) = 0.2 (S.66)

(e) With α(h2) defined as above, use message passing to show that the predictive probability p(v3 =
1|v1 = 1) can be expressed in terms of α(h2) as

p(v3 = 1|v1 = 1) =
xα(h2 = 1) + yα(h2 = 0)

α(h2 = 1) + α(h2 = 0)
(4)

and report the values of x and y.

Solution. Given the definition of p(h3|h2), the message µp(h3|h2)→h3(h3) is

µp(h3|h2)→h3(h3 = 0) = α(h2 = 1) (S.67)

µp(h3|h2)→h3(h3 = 1) = α(h2 = 0) (S.68)

The variable node h3 copies the message so that we have

µp(v3|h3)→v3(v3 = 0) =
∑
h3

p(v3 = 0|h3)µp(h3|h2)→h3(h3) (S.69)

= p(v3 = 0|h3 = 0)α(h2 = 1) + p(v3 = 0|h3 = 1)α(h2 = 0) (S.70)

= 0.6α(h2 = 1) + 0.4α(h2 = 0) (S.71)

µp(v3|hh3)→v3(v3 = 1) =
∑
h3

p(v3 = 1|h3))µp(h3|h2)→h3(h3) (S.72)

= p(v3 = 1|h3 = 0)α(h2 = 1) + p(v3 = 1|h3 = 1)α(h2 = 0) (S.73)

= 0.4α(h2 = 1) + 0.6α(h2 = 0) (S.74)

We thus have

p(v3 = 1|v1 = 1) =
0.4α(h2 = 1) + 0.6α(h2 = 0)

0.4α(h2 = 1) + 0.6α(h2 = 0) + 0.6α(h2 = 1) + 0.4α(h2 = 0)
(S.75)

=
0.4α(h2 = 1) + 0.6α(h2 = 0)

α(h2 = 1) + α(h2 = 0)
(S.76)

The requested x and y are thus: x = 0.4, y = 0.6.

(f) Compute the numerical value of p(v3 = 1|v1 = 1).

10 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Solution. Inserting the numbers gives α(h2 = 0) + α(h2 = 1) = 5/10 = 1/2 so that

p(v3 = 1|v1 = 1) =
0.4 · 0.2 + 0.6 · 0.3

1
2

(S.77)

= 2 ·
(

4

10
· 2

10
+

6

10

3

10

)
(S.78)

=
4

10
· 4

10
+

6

10

6

10
(S.79)

=
1

100
(16 + 36) (S.80)

=
1

100
52 (S.81)

=
52

100
= 0.52 (S.82)

Exercise 5. Hidden Markov models and change of measure

We take here a change of measure perspective on the alpha-recursion.

Consider the following directed graph for a hidden Markov model where the yi correspond to observed
(visible) variables and the xi to unobserved (hidden/latent) variables.

x1 x2 x3 . . .

. . .

xn

y1 y2 y3 yn

The joint model for x = (x1, . . . , xn) and y = (y1, . . . , yn) thus is

p(x,y) = p(x1)

n∏
i=2

p(xi|xi−1)

n∏
i=1

p(yi|xi). (5)

(a) Show that

p(x1, . . . , xn, y1, . . . , yt) = f1(x1)

n∏
i=2

fi(xi|xi−1)

t∏
i=1

p(yi|xi) (6)

for t = 0, . . . , n. We take the case t = 0 to correspond to p(x1, . . . , xn),

p(x1, . . . , xn) = f1(x1)

n∏
i=2

fi(xi|xi−1). (7)

11 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Solution. The result follows by integrating/summing out yt+1 . . . n.

p(x1, . . . , xn, y1, . . . , yt) =

∫
p(x1, . . . , xn, y1, . . . , yn)dyt+1 . . . dyn (S.83)

=

∫
p(x1)

n∏
i=2

p(xi|xi−1)
n∏
i=1

p(yi|xi)dyt+1 . . . dyn (S.84)

= p(x1)

n∏
i=2

p(xi|xi−1)
t∏
i=1

p(yi|xi)
∫ n∏

i=t+1

p(yi|xi)dyt+1 . . . dyn

(S.85)

= p(x1)
n∏
i=2

p(xi|xi−1)
t∏
i=1

p(yi|xi)
n∏

i=t+1

∫
p(yi|xi)dyi︸ ︷︷ ︸

=1

(S.86)

= p(x1)

n∏
i=2

p(xi|xi−1)
t∏
i=1

p(yi|xi) (S.87)

The result for p(x1, . . . , xn) is obtained when we integrate out all y’s.

(b) Show that p(x1, . . . , xn|y1, . . . , yt), t = 0, . . . , n, factorises as

p(x1, . . . , xn|y1, . . . , yt) ∝ p(x1)

n∏
i=2

p(xi|xi−1)

t∏
i=1

gi(xi) (8)

where gi(xi) = p(yi|xi) for a fixed value of yi, and that its normalising constant Zt equals the
likelihood p(y1, . . . , yt)

Solution. The result follows from the basic definition of the conditional

p(x1, . . . , xn|y1, . . . , yt) =
p(x1, . . . , xn, y1, . . . , yt)

p(y1, . . . , yt)
(S.88)

together with the expression for p(x1, . . . , xn, y1, . . . , yt) when the yi are kept fixed.

(c) Denote p(x1, . . . , xn|y1, . . . , yt) by pt(x1, . . . , xn). The index t ≤ n thus indicates the time of the
last y-variable we are conditioning on. Show the following recursion for 1 ≤ t ≤ n:

pt−1(x1, . . . , xt) =

{
p(x1) if t = 1

pt−1(x1, . . . , xt−1)p(xt|xt−1) otherwise
(extension) (9)

pt(x1, . . . , xt) =
1

Zt
pt−1(x1, . . . , xt)gt(xt) (change of measure) (10)

Zt =

∫
pt−1(xt)gt(xt)dxt (11)

By iterating from t = 1 to t = n, we can thus recursively compute p(x1, . . . , xn|y1, . . . , yn), including
its normalising constant Zn, which equals the likelihood Zn = p(y1, . . . , yn)

Solution. We start with (8) which shows that by definition of pt(x1, . . . , xn) we have

pt(x1, . . . , xn) = p(x1, . . . , xn|y1, . . . , yt) (S.89)

∝ p(x1)
n∏
i=2

p(xi|xi−1)
t∏
i=1

gi(xi) (S.90)

12 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

For t = 1, we thus have

p1(x1, . . . , xn) ∝ p(x1)
n∏
i=2

p(xi|xi−1)g1(x1) (S.91)

Integrating out x2, . . . , xn gives

p1(x1) =

∫
p1(x1, . . . , xn)dx2 . . . dxn (S.92)

∝
∫
p(x1)

n∏
i=2

p(xi|xi−1)g1(x1)dx2 . . . dxn (S.93)

∝ p(x1)g1(x1)
∫ n∏

i=2

p(xi|xi−1)dx2 . . . dxn (S.94)

∝ p(x1)g1(x1)
n∏
i=2

∫
p(xi|xi−1)dxi︸ ︷︷ ︸

=1

(S.95)

∝ p(x1)g1(x1) (S.96)

The normalising constant is

Z1 =

∫
p(x1)g1(x1)dx1 (S.97)

This establishes the result for t = 1.

From (8), we further have

pt−1(x1, . . . , xn) = p(x1, . . . , xn|y1, . . . , yt−1) (S.98)

∝ p(x1)
n∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi) (S.99)

Integrating out xt+1, . . . , xn thus gives

pt−1(x1, . . . , xt) =

∫
pt−1(x1, . . . , xn)dxt+1 . . . dxn (S.100)

∝
∫
p(x1)

n∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi)dxt+1 . . . dxn (S.101)

∝ p(x1)
t∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi)

∫ n∏
i=t+1

p(xi|xi−1)dxt+1 . . . dxn (S.102)

∝ p(x1)
t∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi)

n∏
i=t+1

∫
p(xi|xi−1)dxi (S.103)

∝ p(x1)
t∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi) (S.104)

Noting that the product over the gi does not involve xt and that p(xt|xt−1) is a pdf, we
have further

pt−1(x1, . . . , xt−1) =

∫
pt−1(x1, . . . , xt)dxt (S.105)

∝ p(x1)
t−1∏
i=2

p(xi|xi−1)
t−1∏
i=1

gi(xi) (S.106)

13 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Hence
pt−1(x1, . . . , xt) = pt−1(x1, . . . , xt−1)p(xt|xt−1) (S.107)

Note that we can have an equal sign since p(xt|xt−1) is a pdf and hence integrates to
one. This is sometimes called the “extension” since the inputs for pt−1 are extended from
(x1, . . . , xt−1) to x1, . . . , xt.

From (S.90), we further have

pt(x1, . . . , xn) ∝ pt−1(x1, . . . , xn)gt(xt) (S.108)

Integrating out xt+1, . . . , xn thus gives

pt(x1, . . . , xt) ∝ pt−1(x1, . . . , xt)gt(xt) (S.109)

This is a change of measure from pt−1(x1, . . . , xt) to pt(x1, . . . , xt). Note that pt−1(x1, . . . , xt)
only involves gi, and hence observations yi, up to index (time) t− 1. The change of mea-
sure multiplies-in the additional factor gt(xt) = p(yt|xt), and thereby incorporates the
observation at index (time) t into the model.

The stated recursion is complete by computing the normalising constant Zt for pt(x1, . . . , xt),
which equals

Zt =

∫
pt−1(x1, . . . , xt)gt(xt)dx1, . . .dxt (S.110)

=

∫
gt(xt)

[∫
pt−1(x1, . . . , xt)dx1, . . .dxt−1

]
dxt (S.111)

=

∫
gt(xt)pt−1(xt)dxt (S.112)

This recursion, and some slight generalisations, forms the basis for what is known as the
“forward recursion” in particle filtering and sequential Monte Carlo. These topics are out
of scope of the course but an excellent introduction would be the book An Introduction
to Sequential Monte Carlo by Chopin and Papaspiliopoulos.

(d) Use the recursion above to derive the following form of the alpha recursion:

pt−1(xt−1, xt) = pt−1(xt−1)p(xt|xt−1) (extension) (12)

pt−1(xt) =

∫
pt−1(xt−1, xt)dxt−1 (marginalisation) (13)

pt(xt) =
1

Zt
pt−1(xt)gt(xt) (change of measure) (14)

Zt =

∫
pt−1(xt)gt(xt)dxt (15)

with p0(x1) = p(x1).

The term pt(xt) corresponds to α(xt) from the alpha-recursion after normalisation. As in the
lecture, we see that pt−1(xt) is a predictive distribution for xt given observations until time t− 1.
Multiplying pt−1(xt) with gt(xt) gives the new α(xt). In the lecture we called gt(xt) = p(yt|xt) the
“correction”. We see here that the correction has the effect of a change of measure, changing the
predictive distribution pt−1(xt) into the filtering distribution pt(xt).

14 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://link.springer.com/book/10.1007/978-3-030-47845-2
https://link.springer.com/book/10.1007/978-3-030-47845-2
https://creativecommons.org/licenses/by/4.0/

Solution. Let t > 1. With (9), we have

pt−1(xt−1, xt) =

∫
pt−1(x1, . . . , xt)dx1 . . . dxt−2 (S.113)

=

∫
pt−1(x1, . . . , xt−1)p(xt|xt−1)dx1 . . . dxt−2 (S.114)

= p(xt|xt−1)
∫
pt−1(x1, . . . , xt−1)dx1 . . . dxt−2 (S.115)

= p(xt|xt−1)pt−1(xt−1) (S.116)

which proves the “extension”.

With (10), we have

pt(xt) =

∫
pt(x1, . . . , xt)dx1, . . .dxt−1 (S.117)

=
1

Zt

∫
pt−1(x1, . . . , xt)gt(xt)dx1, . . .dxt−1 (S.118)

=
1

Zt
gt(xt)

∫
pt−1(x1, . . . , xt)dx1, . . .dxt−1 (S.119)

=
1

Zt
gt(xt)pt−1(xt) (S.120)

which proves the “change of measure”. Moreover, the normalising constant Zt is the same
as before. Hence completing the iteration until t = n yields the likelihood p(y1, . . . , yn) =
Zn as a by-product of the recursion. The initialisation of the recursion with p0(x1) = p(x1)
is also the same as above.

Exercise 6. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions.
For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability
density function of a Gaussian random variable x with mean µ and variance σ2 by N (x|µ, σ2),

N (x|µ, σ2) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
. (16)

The transition and emission distributions are assumed to be

p(hs|hs−1) = N (hs|Ashs−1, B
2
s) (17)

p(vs|hs) = N (vs|Cshs, D2
s). (18)

The distribution p(h1) is assumed Gaussian with known parameters. The As, Bs, Cs, Ds are also assumed
known.

(a) Show that hs and vs as defined in the following update and observation equations

hs = Ashs−1 +Bsξs (19)

vs = Cshs +Dsηs (20)

follow the conditional distributions in (17) and (18). The random variables ξs and ηs are inde-
pendent from the other variables in the model and follow a standard normal Gaussian distribution,
e.g. ξs ∼ N (ξs|0, 1).
Hint: For two constants c1 and c2, y = c1 + c2x is Gaussian if x is Gaussian. In other words, an
affine transformation of a Gaussian is Gaussian.

The equations mean that hs is obtained by scaling hs−1 and by adding noise with variance B2
s .

The observed value vs is obtained by scaling the hidden hs and by corrupting it with Gaussian
observation noise of variance D2

s .

15 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

Solution. By assumption, ξs is Gaussian. Since we condition on hs−1, Ashs−1 in (19) is
a constant, and since Bs is a constant too, hs is Gaussian.

What we have to show next is that (19) defines the same conditional mean and variance
as the conditional Gaussian in (17): The conditional expectation of hs given hs−1 is

E(hs|hs−1) = Ashs−1 + E(Bsξs) (since we condition on hs−1) (S.121)

= Ashs−1 +BsE(ξs) (by linearity of expectation) (S.122)

= Ashs−1 (since ξs has zero mean) (S.123)

The conditional variance of hs given hs−1 is

V(hs|hs−1) = V(Bsξs) (since we condition on hs−1) (S.124)

= B2
sV(ξs) (by properties of the variance) (S.125)

= B2
s (since ξs has variance one) (S.126)

We see that the conditional mean and variance of hs given hs−1 match those in (17). And
since hs given hs−1 is Gaussian as argued above, the result follows.

Exactly the same reasoning also applies to the case of (20). Conditional on hs, vs is
Gaussian because it is an affine transformation of a Gaussian. The conditional mean of vs
given hs is:

E(vs|hs) = Cshs + E(Dsηs) (since we condition on hs) (S.127)

= Cshs +DsE(ηs) (by linearity of expectation) (S.128)

= Cshs (since ηs has zero mean) (S.129)

The conditional variance of vs given hs is

V(vs|hs) = V(Dsηs) (since we condition on hs) (S.130)

= D2
sV(ηs) (by properties of the variance) (S.131)

= D2
s (since ηs has variance one) (S.132)

Hence, conditional on hs, vs is Gaussian with mean and variance as in (18).

(b) Show that ∫
N (x|µ, σ2)N (y|Ax,B2)dx ∝ N (y|Aµ,A2σ2 +B2) (21)

Hint: While this result can be obtained by integration, an approach that avoids this is as follows:

First note that N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and y. We can thus

consider the integral to correspond to the computation of the marginal of y from the joint. Using

the equivalence of Equations (17)-(18) and (19)-(20), and the fact that the weighted sum of two

Gaussian random variables is a Gaussian random variable then allows one to obtain the result.

Solution. We follow the procedure outlined above. The two Gaussian densities corre-
spond to the equations

x = µ+ σξ (S.133)

y = Ax+Bη (S.134)

16 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

where ξ and η are independent standard normal random variables. The mean of y is

E(y) = AE(x) +BE(η) (S.135)

= Aµ (S.136)

where we have use the linearity of expectation and E(η) = 0. The variance of y is

V(y) = V(Ax) + V(Bη) (since x and η are independent) (S.137)

= A2V(x) +B2V(η) (by properties of the variance) (S.138)

= A2σ2 +B2 (S.139)

Since y is the (weighted) sum of two Gaussians, it is Gaussian itself, and hence its distri-
bution is completely defined by its mean and variance, so that

y ∼ N (y|Aµ,A2σ2 +B2). (S.140)

Now, the product N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and y, so
that the integral can be considered to correspond to the marginalisation of x, and hence
its result is proportional to the density of y, which is N (y|Aµ,A2σ2 +B2).

(c) Show that
N (x|m1, σ

2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3) (22)

where

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1

=
σ2
1σ

2
2

σ2
1 + σ2

2

(23)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (24)

Hint: Work in the negative log domain.

Solution. We show the result using a classical technique called “completing the square”,
see e.g. https://en.wikipedia.org/wiki/Completing_the_square.

We work in the (negative) log-domain and use that

− log
[
N (x|m,σ2)

]
=

(x−m)2

2σ2
+ const (S.141)

=
x2

2σ2
− xm

σ2
+
m2

2σ2
+ const (S.142)

=
x2

2σ2
− xm

σ2
+ const (S.143)

where const indicates terms not depending on x. We thus obtain

− log
[
N (x|m1, σ

2
1)N (x|m2, σ

2
2)
]

= − log
[
N (x|m1, σ

2
1)
]
− log

[
N (x|m2, σ

2
2)
]

(S.144)

=
(x−m1)

2

2σ21
+

(x−m2)
2

2σ22
+ const (S.145)

=
x2

2σ21
− xm1

σ21
+

x2

2σ22
− xm2

σ22
+ const (S.146)

=
x2

2

(
1

σ21
+

1

σ22

)
− x

(
m1

σ21
+
m2

σ22

)
+ const (S.147)

=
x2

2σ23
− x

σ23
σ23

(
m1

σ21
+
m2

σ22

)
+ const, (S.148)

17 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://en.wikipedia.org/wiki/Completing_the_square
https://creativecommons.org/licenses/by/4.0/

where

1

σ23
=

1

σ21
+

1

σ22
. (S.149)

Comparison with (S.143) shows that we can further write

x2

2σ23
− x

σ23
σ23

(
m1

σ21
+
m2

σ22

)
=

(x−m3)
2

2σ23
+ const (S.150)

where

m3 = σ23

(
m1

σ21
+
m2

σ22

)
(S.151)

so that

− log
[
N (x|m1, σ

2
1)N (x|m2, σ

2
2)
]

=
(x−m3)

2

2σ23
+ const (S.152)

and hence

N (x|m1, σ
2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3). (S.153)

Note that the identity

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (S.154)

is obtained as follows

σ23

(
m1

σ21
+
m2

σ22

)
=

σ21σ
2
2

σ21 + σ22

(
m1

σ21
+
m2

σ22

)
(S.155)

= m1
σ22

σ21 + σ22
+m2

σ21
σ21 + σ22

(S.156)

= m1

(
1− σ21

σ21 + σ22

)
+m2

σ21
σ21 + σ22

(S.157)

= m1 +
σ21

σ21 + σ22
(m2 −m1) (S.158)

(d) In the lecture, we have seen that p(ht|v1:t) ∝ α(ht) where α(ht) can be computed recursively via the
“alpha-recursion”

α(h1) = p(h1) · p(v1|h1) α(hs) = p(vs|hs)
∑
hs−1

p(hs|hs−1)α(hs−1). (25)

For continuous random variables, the sum above becomes an integral so that

α(hs) = p(vs|hs)
∫
p(hs|hs−1)α(hs−1)dhs−1. (26)

For reference, let us denote the integral by I(hs),

I(hs) =

∫
p(hs|hs−1)α(hs−1)dhs−1. (27)

18 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

In the lecture, it was pointed out that I(hs) is proportional to the predictive distribution p(hs|v1:s−1).

For a Gaussian prior distribution for h1 and Gaussian emission probability p(v1|h1), α(h1) =
p(h1) · p(v1|h1) ∝ p(h1|v1) is proportional to a Gaussian. We denote its mean by µ1 and its
variance by σ2

1 so that
α(h1) ∝ N (h1|µ1, σ

2
1). (28)

Assuming α(hs−1) ∝ N (hs−1|µs−1, σ
2
s−1) (which holds for s = 2), use Equation (21) to show that

I(hs) ∝ N (hs|Asµs−1, Ps) (29)

where

Ps = A2
sσ

2
s−1 +B2

s . (30)

Solution. We can set α(hs−1) ∝ N (hs−1|µs−1, σ2s−1). Since p(hs|hs−1) is Gaussian, see
Equation (17), Equation (27) becomes

I(hs) ∝
∫
N (hs|Ashs−1, B2

s)N (hs−1|µs−1, σ2s−1)dhs−1. (S.159)

Equation (21) with x ≡ hs−1 and y ≡ hs yields the desired result,

I(hs) ∝ N (hs|Asµs−1, A2
sσ

2
s−1 +B2

s). (S.160)

We can understand the equation as follows: To compute the predictive mean of hs given
v1:s−1, we forward propagate the mean of hs−1|v1:s−1 using the update equation (19).
This gives the mean term Asµs−1. Since hs−1|v1:s−1 has variance σ2s−1, the variance of
hs|v1:s−1 is given by A2

sσ
2
s−1 plus an additional term, B2

s , due to the noise in the forward
propagation. This gives the variance term A2

sσ
2
s−1 +B2

s .

(e) Use Equation (22) to show that

α(hs) ∝ N
(
hs|µs, σ2

s

)
(31)

where

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (32)

σ2
s =

PsD
2
s

PsC2
s +D2

s

(33)

Solution. Having computed I(hs), the final step in the alpha-recursion is

α(hs) = p(vs|hs)I(hs) (S.161)

With Equation (18) we obtain

α(hs) ∝ N (vs|Cshs, D2
s)N (hs|Asµs−1, Ps). (S.162)

We further note that

N (vs|Cshs, D2
s) ∝ N

(
hs|C−1s vs,

D2
s

C2
s

)
(S.163)

so that we can apply Equation (22) (with m1 = Aµs−1, σ
2
1 = Ps)

α(hs) ∝ N
(
hs|C−1s vs,

D2
s

C2
s

)
N (hs|Asµs−1, Ps) (S.164)

∝ N
(
hs, µs, σ

2
s

)
(S.165)

19 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

with

µs = Asµs−1 +
Ps

Ps + D2
s

C2
s

(
C−1s vs −Asµs−1

)
(S.166)

= Asµs−1 +
PsC

2
s

C2
sPs +D2

s

(
C−1s vs −Asµs−1

)
(S.167)

= Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (S.168)

σ2s =
Ps

D2
s

C2
s

Ps + D2
s

C2
s

(S.169)

=
PsD

2
s

PsC2
s +D2

s

(S.170)

(S.171)

(f) Show that α(hs) can be re-written as

α(hs) ∝ N
(
hs|µs, σ2

s

)
(34)

where

µs = Asµs−1 +Ks (vs − CsAsµs−1) (35)

σ2
s = (1−KsCs)Ps (36)

Ks =
PsCs

C2
sPs +D2

s

(37)

These are the Kalman filter equations and Ks is called the Kalman filter gain.

Solution. We start from

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) , (S.172)

and see that
PsCs

C2
sPs +D2

s

= Ks (S.173)

so that

µs = Asµs−1 +Ks (vs − CsAsµs−1) . (S.174)

For the variance σ2s , we have

σ2s =
PsD

2
s

PsC2
s +D2

s

(S.175)

=
D2
s

PsC2
s +D2

s

Ps (S.176)

=

(
1− PsC

2
s

PsC2
s +D2

s

)
Ps (S.177)

= (1−KsCs)Ps, (S.178)

which is the desired result.

20 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

The filtering result generalises to vector valued latents and visibles where the transition
and emission distributions in (17) and (18) become

p(hs|hs−1) = N (hs|Ahs−1,ΣΣΣ
h), (S.179)

p(vs|hs) = N (vs|Cshs,ΣΣΣ
v), (S.180)

where N () denotes multivariate Gaussian pdfs, e.g.

N (vs|Cshs,ΣΣΣ
v) =

1

| det(2πΣΣΣv)|1/2
exp

(
−1

2
(vs −Cshs)

>(ΣΣΣv)−1(vs −Cshs)

)
. (S.181)

We then have

p(ht|v1:t) = N (ht|µµµt,ΣΣΣt) (S.182)

where the posterior mean and variance are recursively computed as

µµµs = Asµµµs−1 + Ks(vs −CsAsµµµs−1) (S.183)

ΣΣΣs = (I−KsCs)Ps (S.184)

Ps = AsΣΣΣs−1A
>
s + ΣΣΣh (S.185)

Ks = PsC
>
s

(
CsPsC

>
s + ΣΣΣv

)−1
(S.186)

and initialised with µµµ1 and ΣΣΣ1 equal to the mean and variance of p(h1|v1). The matrix
Ks is then called the Kalman gain matrix.

The Kalman filter is widely applicable, see e.g. https://en.wikipedia.org/wiki/Kalman_
filter, and has played a role in historic events such as the moon landing, see e.g.
http://ieeexplore.ieee.org/document/5466132/

An example of the application of the Kalman filter to tracking is shown in Figure 1.

Figure 1: Kalman filtering for tracking of a moving object. The blue points indicate the
true positions of the object in a two-dimensional space at successive time steps, the green
points denote noisy measurements of the positions, and the red crosses indicate the means of
the inferred posterior distributions of the positions obtained by running the Kalman filtering
equations. The covariances of the inferred positions are indicated by the red ellipses, which
correspond to contours having one standard deviation. (Bishop, Figure 13.22)

(g) Explain Equation (35) in non-technical terms. What happens if the variance D2
s of the observation

noise goes to zero?

21 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
http://ieeexplore.ieee.org/document/5466132/
https://creativecommons.org/licenses/by/4.0/

Solution. We have already seen that Asµs−1 is the predictive mean of hs given v1:s−1.
The term CsAsµs−1 is thus the predictive mean of vs given the observations so far, v1:s−1.
The difference vs−CsAsµs−1 is thus the prediction error of the observable. Since α(hs) is
proportional to p(hs|v1:s) and µs its mean, we thus see that the posterior mean of hs|v1:s
equals the posterior mean of hs|v1:s−1, Asµs−1, updated by the prediction error of the
observable weighted by the Kalman gain.

For D2
s → 0, Ks → C−1s and

µs = Asµs−1 +Ks (vs − CsAsµs−1) (S.187)

= Asµs−1 + C−1s (vs − CsAsµs−1) (S.188)

= Asµs−1 + C−1s vs −Asµs−1 (S.189)

= C−1s vs, (S.190)

so that the posterior mean of p(hs|v1:s) is obtained by inverting the observation equation.
Moreover, the variance σ2s of hs|v1:s goes to zero so that the value of hs is known precisely
and equals C−1s vs.

22 ©Michael U. Gutmann, UoE, 2018-22 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

