Exercises for the tutorials: 2(a-c) and 4(a-b).
The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Conversion to factor graphs

(a) Draw an undirected graph and an undirected factor graph for $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$

Solution.

(b) Draw an undirected factor graph for the directed graphical model defined by the graph below.

Solution. The graph specifies probabilistic models that factorise as

$$
p\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)=p\left(x_{1}\right) p\left(y_{1} \mid x_{1}\right) \prod_{i=2}^{4} p\left(y_{i} \mid x_{i}\right) p\left(x_{i} \mid x_{i-1}\right)
$$

It is the graph for a hidden Markov model. The corresponding factor graph is shown below.

(c) Draw the moralised graph and an undirected factor graph for directed graphical models defined by the graph below (this kind of graph is called a polytree: there are no loops but a node may have more than one parent).

Solution. The moral graph is obtained by connecting the parents of the collider node x_{4}. See the graph on the left in the figure below.
For the factor graph, we note that the directed graph defines the following class of probabilistic models

$$
p\left(x_{1}, \ldots x_{6}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}\right) p\left(x_{4} \mid x_{1}, x_{2}\right) p\left(x_{5} \mid x_{4}\right) p\left(x_{6} \mid x_{4}\right)
$$

This gives the factor graph on right in the figure below.

Note:

- The moral graph contains a loop while the factor graph does not. The factor graph is still a polytree. This can be exploited for inference.
- One may choose to group some factors together in order to obtain a factor graph with a particular structure (see factor graph below)

Exercise 2. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.

Let all variables be binary, $x_{i} \in\{0,1\}$, and the factors be defined as follows:

(a) Mark the graph with arrows indicating all messages that need to be computed for the computation of $p\left(x_{1}\right)$.

Solution.

(b) Compute the messages that you have identified.

Assuming that the computation of the messages is scheduled according to a common clock, group the messages together so that all messages in the same group can be computed in parallel during a clock cycle.

Solution. Since the variables are binary, each message can be represented as a twodimensional vector. We use the convention that the first element of the vector corresponds to the message for $x_{i}=0$ and the second element to the message for $x_{i}=1$. For example,

$$
\begin{equation*}
\mu_{\phi_{A} \rightarrow x_{1}}=\binom{2}{4} \tag{S.1}
\end{equation*}
$$

means that the message $\mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)$ equals 2 for $x_{1}=0$, i.e. $\mu_{\phi_{A} \rightarrow x_{1}}(0)=2$.
The following figure shows a grouping (scheduling) of the computation of the messages.

Clock cycle 1:

$$
\begin{equation*}
\mu_{\phi_{A} \rightarrow x_{1}}=\binom{2}{4} \quad \mu_{\phi_{B} \rightarrow x_{2}}=\binom{4}{4} \quad \mu_{x_{4} \rightarrow \phi_{D}}=\binom{1}{1} \quad \mu_{\phi_{F} \rightarrow x_{5}}=\binom{1}{8} \tag{S.2}
\end{equation*}
$$

Clock cycle 2:

$$
\begin{equation*}
\mu_{x_{2} \rightarrow \phi_{C}}=\mu_{\phi_{B} \rightarrow x_{2}}=\binom{4}{4} \quad \mu_{x_{5} \rightarrow \phi_{E}}=\mu_{\phi_{F} \rightarrow x_{5}}=\binom{1}{8} \tag{S.3}
\end{equation*}
$$

Message $\mu_{\phi_{D} \rightarrow x_{3}}$ is defined as

$$
\begin{equation*}
\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{4}} \phi_{D}\left(x_{3}, x_{4}\right) \mu_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right) \tag{S.4}
\end{equation*}
$$

so that

$$
\begin{align*}
\mu_{\phi_{D} \rightarrow x_{3}}(0) & =\sum_{x_{4}=0}^{1} \phi_{D}\left(0, x_{4}\right) \mu_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right) \tag{S.5}\\
& =\phi_{D}(0,0) \mu_{x_{4} \rightarrow \phi_{D}}(0)+\phi_{D}(0,1) \mu_{x_{4} \rightarrow \phi_{D}}(1) \tag{S.6}\\
& =8 \cdot 1+2 \cdot 1 \tag{S.7}\\
& =10 \tag{S.8}\\
\mu_{\phi_{D} \rightarrow x_{3}}(1) & =\sum_{x_{4}=0}^{1} \phi_{D}\left(1, x_{4}\right) \mu_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right) \tag{S.9}\\
& =\phi_{D}(1,0) \mu_{x_{4} \rightarrow \phi_{D}}(0)+\phi_{D}(1,1) \mu_{x_{4} \rightarrow \phi_{D}}(1) \tag{S.10}\\
& =2 \cdot 1+6 \cdot 1 \tag{S.11}\\
& =8 \tag{S.12}
\end{align*}
$$

and thus

$$
\begin{equation*}
\mu_{\phi_{D} \rightarrow x_{3}}=\binom{10}{8} . \tag{S.13}
\end{equation*}
$$

The above computations can be written more compactly in matrix notation. Let $\boldsymbol{\phi}_{\boldsymbol{D}}$ be the matrix that contains the outputs of $\phi_{D}\left(x_{3}, x_{4}\right)$

$$
\phi_{D}=\left(\begin{array}{ll}
\phi_{D}\left(x_{3}=0, x_{4}=0\right) & \phi_{D}\left(x_{3}=0, x_{4}=1\right) \tag{S.14}\\
\phi_{D}\left(x_{3}=1, x_{4}=0\right) & \phi_{D}\left(x_{3}=1, x_{4}=1\right)
\end{array}\right)=\left(\begin{array}{ll}
8 & 2 \\
2 & 6
\end{array}\right) .
$$

We can then write $\mu_{\phi_{D} \rightarrow x_{3}}$ in terms of a matrix vector product,

$$
\begin{equation*}
\mu_{\phi_{D} \rightarrow x_{3}}=\phi_{D} \mu_{x_{4} \rightarrow \phi_{D}} . \tag{S.15}
\end{equation*}
$$

Clock cycle 3:

Representing the factor ϕ_{E} as matrix $\boldsymbol{\phi}_{\boldsymbol{E}}$,

$$
\phi_{\boldsymbol{E}}=\left(\begin{array}{ll}
\phi_{E}\left(x_{3}=0, x_{5}=0\right) & \phi_{E}\left(x_{3}=0, x_{5}=1\right) \tag{S.16}\\
\phi_{E}\left(x_{3}=1, x_{5}=0\right) & \phi_{E}\left(x_{3}=1, x_{5}=1\right)
\end{array}\right)=\left(\begin{array}{ll}
3 & 6 \\
6 & 3
\end{array}\right),
$$

we can write

$$
\begin{equation*}
\mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)=\sum_{x_{5}} \phi_{E}\left(x_{3}, x_{5}\right) \mu_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right) \tag{S.17}
\end{equation*}
$$

as a matrix vector product,

$$
\begin{align*}
\mu_{\phi_{E} \rightarrow x_{3}} & =\phi_{E} \mu_{x_{5} \rightarrow \phi_{E}} \tag{S.18}\\
& =\left(\begin{array}{ll}
3 & 6 \\
6 & 3
\end{array}\right)\binom{1}{8} \tag{S.19}\\
& =\binom{51}{30} . \tag{S.20}
\end{align*}
$$

Clock cycle 4:

Variable node x_{3} has received all incoming messages, and can thus output $\mu_{x_{3} \rightarrow \phi_{C}}$,

$$
\begin{equation*}
\mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)=\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right) . \tag{S.21}
\end{equation*}
$$

Using \odot to denote element-wise multiplication of two vectors, we have

$$
\begin{align*}
\mu_{x_{3} \rightarrow \phi_{C}} & =\mu_{\phi_{D} \rightarrow x_{3}} \odot \mu_{\phi_{E} \rightarrow x_{3}} \tag{S.22}\\
& =\binom{10}{8} \odot\binom{51}{30} \tag{S.23}\\
& =\binom{510}{240} . \tag{S.24}
\end{align*}
$$

Clock cycle 5:

Factor node ϕ_{C} has received all incoming messages, and can thus output $\mu_{\phi_{C} \rightarrow x_{1}}$,

$$
\begin{equation*}
\mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) . \tag{S.25}
\end{equation*}
$$

Writing out the sum for $x_{1}=0$ and $x_{1}=1$ gives

$$
\begin{align*}
\mu_{\phi_{C} \rightarrow x_{1}}(0)= & \sum_{x_{2}, x_{3}} \phi_{C}\left(0, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \tag{S.26}\\
= & \left.\phi_{C}\left(0, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(0,0)}+ \tag{S.27}\\
& \left.\phi_{C}\left(0, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(1,0)}+ \tag{S.28}\\
& \left.\phi_{C}\left(0, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(0,1)}+ \tag{S.29}\\
& \left.\phi_{C}\left(0, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(1,1)} \tag{S.30}\\
= & 4 \cdot 4 \cdot 510+ \tag{S.31}\\
& 2 \cdot 4 \cdot 510+ \tag{S.32}\\
& 2 \cdot 4 \cdot 240+ \tag{S.33}\\
\mu_{\phi_{C} \rightarrow x_{1}}(1)= & \sum_{x_{2}, x_{3}} \phi_{C}\left(1, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \tag{S.34}\\
= & \left.\phi_{C}\left(1, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(0,0)}+ \tag{S.35}\\
& \left.\phi_{C}\left(1, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(1,0)}+ \tag{S.36}\\
& \left.\phi_{C}\left(1, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(0,1)}+ \tag{S.37}\\
& \left.\phi_{C}\left(1, x_{2}, x_{3}\right) \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)\right|_{\left(x_{2}, x_{3}\right)=(1,1)} \tag{S.38}\\
= & 2 \cdot 4 \cdot 510+ \tag{S.39}\\
& 6 \cdot 4 \cdot 510+ \tag{S.40}\\
& 6 \cdot 4 \cdot 240+ \tag{S.41}\\
& 4 \cdot 4 \cdot 240 \tag{S.42}
\end{align*}
$$

and hence

$$
\begin{equation*}
\mu_{\phi_{C} \rightarrow x_{1}}=\binom{19920}{25920} \tag{S.46}
\end{equation*}
$$

After step 5, variable node x_{1} has received all incoming messages and the marginal can be computed.
In addition to the messages needed for computation of $p\left(x_{1}\right)$ one can compute all messages in the graph in five clock cycles, see Figure 1. This means that all marginals, as well as the joints of those variables sharing a factor node, are available after five clock cycles.
(c) What is $p\left(x_{1}=1\right)$?

Solution. We compute the marginal $p\left(x_{1}\right)$ as

$$
\begin{equation*}
p\left(x_{1}\right) \propto \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right) \tag{S.47}
\end{equation*}
$$

Figure 1: Answer to Exercise 2 Question (b): Computing all messages in five clock cycles. If we also computed the messages toward the leaf factor nodes, we needed six cycles, but they are not necessary for computation of the marginals so they are omitted.
which is in vector notation

$$
\begin{align*}
\binom{p\left(x_{1}=0\right)}{p\left(x_{1}=1\right)} & \propto \boldsymbol{\mu}_{\phi_{\boldsymbol{A}} \rightarrow x_{\mathbf{1}}} \odot \boldsymbol{\mu}_{\phi_{C} \rightarrow x_{\mathbf{1}}} \tag{S.48}\\
& \propto\binom{2}{4} \odot\binom{19920}{25920} \tag{S.49}\\
& \propto\binom{39840}{103680} \tag{S.50}
\end{align*}
$$

Normalisation gives

$$
\begin{align*}
\binom{p\left(x_{1}=0\right)}{p\left(x_{1}=1\right)} & =\frac{1}{39840+103680}\binom{39840}{103680} \tag{S.51}\\
& =\binom{0.2776}{0.7224} \tag{S.52}
\end{align*}
$$

so that $p\left(x_{1}=1\right)=0.7224$.
Note the relatively large numbers in the messages that we computed. In other cases, one may obtain very small ones depending on the scale of the factors. This can cause numerical issues that can be addressed by working in the logarithmic domain.
(d) Draw the factor graph corresponding to $p\left(x_{1}, x_{3}, x_{4}, x_{5} \mid x_{2}=1\right)$ and provide the numerical values for all factors.

Solution. The pmf represented by the original factor graph is

$$
p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)
$$

The conditional $p\left(x_{1}, x_{3}, x_{4}, x_{5} \mid x_{2}=1\right)$ is proportional to $p\left(x_{1}, \ldots, x_{5}\right)$ with x_{2} fixed to $x_{2}=1$, i.e.

$$
\begin{align*}
p\left(x_{1}, x_{3}, x_{4}, x_{5} \mid x_{2}=1\right) & \propto p\left(x_{1}, x_{2}=1, x_{3}, x_{4}, x_{5}\right) \tag{S.53}\\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}=1\right) \phi_{C}\left(x_{1}, x_{2}=1, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \tag{S.54}\\
& \propto \phi_{A}\left(x_{1}\right) \phi_{C}^{x_{2}}\left(x_{1}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \tag{S.55}
\end{align*}
$$

where $\phi_{C}^{x_{2}}\left(x_{1}, x_{3}\right)=\phi_{C}\left(x_{1}, x_{2}=1, x_{3}\right)$. The numerical values of $\phi_{C}^{x_{2}}\left(x_{1}, x_{3}\right)$ can be read from the table defining $\phi_{C}\left(x_{1}, x_{2}, x_{3}\right)$, extracting those rows where $x_{2}=1$,

	x_{1}	x_{2}	x_{3}	ϕ_{C}
	0	0	0	4
	1	0	0	2
\rightarrow	0	1	0	2
\rightarrow	1	1	0	6
	0	0	1	2
	1	0	1	6
\rightarrow	0	1	1	6
\rightarrow	1	1	1	4

x_{1}	x_{3}	$\phi_{C}^{x_{2}}$
0	0	2
1	0	6
0	1	6
1	1	4

The factor graph for $p\left(x_{1}, x_{3}, x_{4}, x_{5} \mid x_{2}=1\right)$ is shown below. Factor ϕ_{B} has disappeared since it only depended on x_{2} and thus became a constant. Factor ϕ_{C} is replaced by $\phi_{C}^{x_{2}}$ defined above. The remaining factors are the same as in the original factor graph.

(e) Compute $p\left(x_{1}=1 \mid x_{2}=1\right)$, re-using messages that you have already computed for the evaluation of $p\left(x_{1}=1\right)$.

Solution. The message $\mu_{\phi_{A} \rightarrow x_{1}}$ is the same as in the original factor graph and $\mu_{x_{3} \rightarrow \phi_{C}^{x_{2}}}=$ $\mu_{x_{3} \rightarrow \phi_{C}}$. This is because the outgoing message from x_{3} corresponds to the effective factor obtained by summing out all variables in the sub-trees attached to x_{3} (without the $\phi_{C}^{x_{2}}$ branch), and these sub-trees do not depend on x_{2}.
The message $\mu_{\phi_{C}^{x_{2}} \rightarrow x_{1}}$ needs to be newly computed. We have

$$
\begin{equation*}
\mu_{\phi_{C}^{x_{2}} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{3}} \phi_{C}^{x_{2}}\left(x_{1}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}^{x_{2}}} \tag{S.56}
\end{equation*}
$$

or in vector notation

$$
\begin{align*}
\boldsymbol{\mu}_{\boldsymbol{\phi}}^{\boldsymbol{x}_{\boldsymbol{2}} \rightarrow x_{\mathbf{1}}} & =\boldsymbol{\phi}_{C}^{\boldsymbol{x}_{2}} \boldsymbol{\mu}_{x_{3} \rightarrow \phi_{C}^{\boldsymbol{x}_{2}}} \tag{S.57}\\
& =\left(\begin{array}{ll}
\phi_{C}^{x_{2}} & \left(x_{1}=0, x_{3}=0\right) \\
\phi_{C}^{x_{2}}\left(x_{1}=1, x_{3}=0\right) & \phi_{C}^{x_{2}}\left(x_{1}=0, x_{3}=1\right) \\
\left.x_{1}=1, x_{3}=1\right)
\end{array}\right) \boldsymbol{\mu}_{x_{3} \rightarrow \phi_{C}^{x_{2}}} \tag{S.58}\\
& =\left(\begin{array}{ll}
2 & 6 \\
6 & 4
\end{array}\right)\binom{510}{240} \tag{S.59}\\
& =\binom{2460}{4020} \tag{S.60}
\end{align*}
$$

We thus obtain for the marginal posterior of x_{1} given $x_{2}=1$:

$$
\begin{align*}
\binom{p\left(x_{1}=0 \mid x_{2}=1\right)}{p\left(x_{1}=1 \mid x_{2}=1\right)} & \propto \boldsymbol{\mu}_{\boldsymbol{\phi}_{\boldsymbol{A}} \rightarrow \boldsymbol{x}_{\mathbf{1}}} \odot \boldsymbol{\mu}_{\boldsymbol{\phi}_{\boldsymbol{C}}^{\boldsymbol{x}_{\mathbf{2}}} \rightarrow \boldsymbol{x}_{\mathbf{1}}} \tag{S.61}\\
& \propto\binom{2}{4} \odot\binom{2460}{4020} \tag{S.62}\\
& \propto\binom{4920}{16080} . \tag{S.63}
\end{align*}
$$

Normalisation gives

$$
\begin{equation*}
\binom{p\left(x_{1}=0 \mid x_{2}=1\right)}{p\left(x_{1}=1 \mid x_{2}=1\right)}=\binom{0.2343}{0.7657} \tag{S.64}
\end{equation*}
$$

and thus $p\left(x_{1}=1 \mid x_{2}=1\right)=0.7657$. The posterior probability is slightly larger than the prior probability, $p\left(x_{1}=1\right)=0.7224$.

Exercise 3. Sum-product message passing

The following factor graph represents a Gibbs distribution over four binary variables $x_{i} \in\{0,1\}$.

The factors $\phi_{a}, \phi_{b}, \phi_{d}$ are defined as follows:

x_{1}	ϕ_{a}
0	2
1	1

x_{1}	x_{2}	ϕ_{b}
0	0	5
1	0	2
0	1	2
1	1	6

x_{3}	ϕ_{d}
0	1
1	2

and $\phi_{c}\left(x_{1}, x_{3}, x_{4}\right)=1$ if $x_{1}=x_{3}=x_{4}$, and is zero otherwise.
For all questions below, justify your answer:
(a) Compute the values of $\mu_{x_{2} \rightarrow \phi_{b}}\left(x_{2}\right)$ for $x_{2}=0$ and $x_{2}=1$.

Solution. Messages from leaf-variable nodes to factor nodes are equal to one, so that $\mu_{x_{2} \rightarrow \phi_{b}}\left(x_{2}\right)=1$ for all x_{2}.
(b) Assume the message $\mu_{x_{4} \rightarrow \phi_{c}}\left(x_{4}\right)$ equals

$$
\mu_{x_{4} \rightarrow \phi_{c}}\left(x_{4}\right)= \begin{cases}1 & \text { if } x_{4}=0 \\ 3 & \text { if } x_{4}=1\end{cases}
$$

Compute the values of $\phi_{e}\left(x_{4}\right)$ for $x_{4}=0$ and $x_{4}=1$.

Solution. Messages from leaf-factors to their variable nodes are equal to the leaf-factors, and variable nodes with single incoming messages copy the message. We thus have

$$
\begin{align*}
& \mu_{\phi_{e} \rightarrow x_{4}}\left(x_{4}\right)=\phi_{e}\left(x_{4}\right) \tag{S.65}\\
& \mu_{x_{4} \rightarrow \phi_{c}}\left(x_{4}\right)=\mu_{\phi_{e} \rightarrow x_{4}}\left(x_{4}\right) \tag{S.66}
\end{align*}
$$

and hence

$$
\phi_{e}\left(x_{4}\right)= \begin{cases}1 & \text { if } x_{4}=0 \tag{S.67}\\ 3 & \text { if } x_{4}=1\end{cases}
$$

(c) Compute the values of $\mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}\right)$ for $x_{1}=0$ and $x_{1}=1$.

Solution. We first compute $\mu_{x_{3} \rightarrow \phi_{c}}\left(x_{3}\right)$:

$$
\begin{align*}
\mu_{x_{3} \rightarrow \phi_{c}}\left(x_{3}\right) & =\mu_{\phi_{d} \rightarrow x_{3}}\left(x_{3}\right) \tag{S.68}\\
& = \begin{cases}1 & \text { if } x_{3}=0 \\
2 & \text { if } x_{3}=1\end{cases} \tag{S.69}
\end{align*}
$$

The desired message $\mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}\right)$ is by definition

$$
\begin{equation*}
\mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{3}, x_{4}} \phi_{c}\left(x_{1}, x_{3}, x_{4}\right) \mu_{x_{3} \rightarrow \phi_{c}}\left(x_{3}\right) \mu_{x_{4} \rightarrow \phi_{c}}\left(x_{4}\right) \tag{S.70}
\end{equation*}
$$

Since $\phi_{c}\left(x_{1}, x_{3}, x_{4}\right)$ is only non-zero if $x_{1}=x_{3}=x_{4}$, where it equals one, the computations simplify:

$$
\begin{align*}
\mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}=0\right) & =\phi_{c}(0,0,0) \mu_{x_{3} \rightarrow \phi_{c}}(0) \mu_{x_{4} \rightarrow \phi_{c}}(0) \tag{S.71}\\
& =1 \cdot 1 \cdot 1 \tag{S.72}\\
& =1 \tag{S.73}\\
\mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}=1\right) & =\phi_{c}(1,1,1) \mu_{x_{3} \rightarrow \phi_{c}}(1) \mu_{x_{4} \rightarrow \phi_{c}}(1) \tag{S.74}\\
& =1 \cdot 2 \cdot 3 \tag{S.75}\\
& =6 \tag{S.76}
\end{align*}
$$

(d) The message $\mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}\right)$ equals

$$
\mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}\right)= \begin{cases}7 & \text { if } x_{1}=0 \\ 8 & \text { if } x_{1}=1\end{cases}
$$

What is the probability that $x_{1}=1$, i.e. $p\left(x_{1}=1\right)$?

Solution. The unnormalised marginal $p\left(x_{1}\right)$ is given by the product of the three incoming messages

$$
\begin{equation*}
p\left(x_{1}\right) \propto \mu_{\phi_{a} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{c} \rightarrow x_{1}}\left(x_{1}\right) \tag{S.77}
\end{equation*}
$$

With

$$
\begin{equation*}
\mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}\right)=\sum_{x_{2}} \phi_{b}\left(x_{1}, x_{2}\right) \tag{S.78}
\end{equation*}
$$

it follows that

$$
\begin{align*}
\mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}=0\right) & =\sum_{x_{2}} \phi_{b}\left(0, x_{2}\right) \tag{S.79}\\
& =5+2 \tag{S.80}\\
& =7 \tag{S.81}\\
\mu_{\phi_{b} \rightarrow x_{1}}\left(x_{1}=1\right) & =\sum_{x_{2}} \phi_{b}\left(1, x_{2}\right) \tag{S.82}\\
& =2+6 \tag{S.83}\\
& =8 \tag{S.84}
\end{align*}
$$

Hence, we obtain

$$
\begin{align*}
& p\left(x_{1}=0\right) \propto 2 \cdot 7 \cdot 1=14 \tag{S.85}\\
& p\left(x_{1}=1\right) \propto 1 \cdot 8 \cdot 6=48 \tag{S.86}
\end{align*}
$$

and normalisation yields the desired result

$$
\begin{equation*}
p\left(x_{1}=1\right)=\frac{48}{14+48}=\frac{48}{62}=\frac{24}{31}=0.774 \tag{S.87}
\end{equation*}
$$

Exercise 4. Max-sum message passing

We here compute most probable states for the factor graph and factors below.

Let all variables be binary, $x_{i} \in\{0,1\}$, and the factors be defined as follows:

(a) Will we need to compute the normalising constant Z to determine $\operatorname{argmax}_{\mathbf{x}} p\left(x_{1}, \ldots, x_{5}\right)$?

Solution. This is not necessary since $\operatorname{argmax}_{\mathbf{x}} p\left(x_{1}, \ldots, x_{5}\right)=\operatorname{argmax}_{\mathbf{x}} c p\left(x_{1}, \ldots, x_{5}\right)$ for any constant c. Algorithmically, the backtracking algorithm is also invariant to any scaling of the factors.
(b) Compute $\operatorname{argmax}_{x_{1}, x_{2}, x_{3}} p\left(x_{1}, x_{2}, x_{3} \mid x_{4}=0, x_{5}=0\right)$ via max-sum message passing.

Solution. We first derive the factor graph and corresponding factors for $p\left(x_{1}, x_{2}, x_{3} \mid x_{4}=\right.$ $0, x_{5}=0$).
For fixed values of x_{4}, x_{5}, the two variables are removed from the graph, and the factors $\phi_{D}\left(x_{3}, x_{4}\right)$ and $\phi_{E}\left(x_{3}, x_{5}\right)$ are reduced to univariate factors $\phi_{D}^{x_{4}}\left(x_{3}\right)$ and $\phi_{D}^{x_{5}}\left(x_{3}\right)$ by retaining those rows in the table where $x_{4}=0$ and $x_{5}=0$, respectively:

x_{3}	$\phi_{D}^{x_{4}}$
0	8
1	2

x_{3}	$\phi_{E}^{x_{5}}$
0	3
1	6

Since both factors only depend on x_{3}, they can be combined into a new factor $\tilde{\phi}\left(x_{3}\right)$ by element-wise multiplication.

x_{3}	$\tilde{\phi}$
0	24
1	12

Moreover, since we work with an unnormalised model, we can rescale the factor so that the maximum value is one, so that

Factor $\phi_{F}\left(x_{5}\right)$ is a constant for fixed value of x_{5} and can be ignored. The factor graph for $p\left(x_{1}, x_{2}, x_{3} \mid x_{4}=0, x_{5}=0\right)$ thus is

Let us fix x_{1} as root towards which we compute the messages. The messages that we need to compute are shown in the following graph

Next, we compute the leaf (log) messages. We only have factor nodes as leaf nodes so that

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{A} \rightarrow x_{1}}=\binom{\log \phi_{A}\left(x_{1}=0\right)}{\log \phi_{A}\left(x_{1}=1\right)}=\binom{\log 2}{\log 4} \tag{S.88}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{B} \rightarrow x_{2}}=\binom{\log \phi_{B}\left(x_{2}=0\right)}{\log \phi_{B}\left(x_{2}=1\right)}=\binom{\log 4}{\log 4} \quad \boldsymbol{\lambda}_{\tilde{\phi} \rightarrow x_{3}}=\binom{\log \tilde{\phi}\left(x_{3}=0\right)}{\log \tilde{\phi}\left(x_{3}=1\right)}=\binom{\log 2}{\log 1} \tag{S.89}
\end{equation*}
$$

Since the variable nodes x_{2} and x_{3} only have one incoming edge each, we obtain

$$
\begin{equation*}
\boldsymbol{\lambda}_{x_{2} \rightarrow \phi_{C}}=\boldsymbol{\lambda}_{\phi_{B} \rightarrow x_{2}}=\binom{\log 4}{\log 4} \quad \boldsymbol{\lambda}_{x_{3} \rightarrow \phi_{C}}=\boldsymbol{\lambda}_{\tilde{\phi} \rightarrow x_{3}}=\binom{\log 2}{\log 1} \tag{S.90}
\end{equation*}
$$

The message $\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)$ equals

$$
\begin{equation*}
\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)=\max _{x_{2}, x_{3}} \log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \tag{S.91}
\end{equation*}
$$

where we wrote the messages in non-vector notation to highlight their dependency on the variables x_{2} and x_{3}. We now have to consider all combinations of x_{2} and x_{3}

x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}=0, x_{2}, x_{3}\right)$
0	0	$\log 4$
1	0	$\log 2$
0	1	$\log 2$
1	1	$\log 6$

x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}=1, x_{2}, x_{3}\right)$
0	0	$\log 2$
1	0	$\log 6$
0	1	$\log 6$
1	1	$\log 4$

Furthermore

x_{2}	x_{3}	$\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
0	0	$\log 4+\log 2=\log 8$
1	0	$\log 4+\log 2=\log 8$
0	1	$\log 4$
1	1	$\log 4$

Hence for $x_{1}=0$, we have

x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}=0, x_{2}, x_{3}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
0	0	$\log 4+\log 8=\log 32$
1	0	$\log 2+\log 8=\log 16$
0	1	$\log 2+\log 4=\log 8$
1	1	$\log 6+\log 4=\log 24$

The maximal value is $\log 32$ and for backtracking, we also need to keep track of the argmax which is here $\hat{x}_{2}=\hat{x}_{3}=0$.
For $x_{1}=1$, we have

x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}=1, x_{2}, x_{3}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
0	0	$\log 2+\log 8=\log 16$
1	0	$\log 6+\log 8=\log 48$
0	1	$\log 6+\log 4=\log 24$
1	1	$\log 4+\log 4=\log 16$

The maximal value is $\log 48$ and the argmax is $\left(\hat{x}_{2}=1, \hat{x}_{3}=0\right)$.
So overall, we have

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{C} \rightarrow x_{1}}=\binom{\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}=0\right)}{\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}=1\right)}=\binom{\log 32}{\log 48} \tag{S.92}
\end{equation*}
$$

and the argmax back-tracking function is

$$
\lambda_{\phi_{C} \rightarrow x_{1}}^{*}\left(x_{1}\right)= \begin{cases}\left(\hat{x}_{2}=0, \hat{x}_{3}=0\right) & \text { if } x_{1}=0 \tag{S.93}\\ \left(\hat{x}_{2}=1, \hat{x}_{3}=0\right) & \text { if } x_{1}=1\end{cases}
$$

We now have all incoming messages to the assigned root node x_{1}. Ignoring the normalising constant, we obtain

$$
\begin{align*}
\gamma & =\binom{\gamma^{*}\left(x_{1}=0\right)}{\gamma^{*}\left(x_{1}=1\right)}=\boldsymbol{\lambda}_{\phi_{A} \rightarrow x_{1}}+\boldsymbol{\lambda}_{\phi_{C} \rightarrow x_{1}} \tag{S.94}\\
& =\binom{\log 2}{\log 4}+\binom{\log 32}{\log 48}=\binom{\log 64}{\log 192} \tag{S.95}
\end{align*}
$$

The value x_{1} for which $\gamma^{*}\left(x_{1}\right)$ is largest is thus $\hat{x}_{1}=1$. Plugging $\hat{x}_{1}=1$ into the backtracking function $\lambda_{\phi_{C} \rightarrow x_{1}}^{*}\left(x_{1}\right)$ gives

$$
\begin{equation*}
\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}\right)=\underset{x_{1}, x_{2}, x_{3}}{\operatorname{argmax}} p\left(x_{1}, x_{2}, x_{3} \mid x_{4}=0, x_{5}=0\right)=(1,1,0) . \tag{S.96}
\end{equation*}
$$

In this low-dimensional example, we can verify the solution by computing the unnormalised pmf for all combinations of x_{1}, x_{2}, x_{3}. This is done in the following table where we start with the table for ϕ_{C} and then multiply-in the further factors $\phi_{A}, \tilde{\phi}$ and ϕ_{B}.

x_{1}	x_{2}	x_{3}	ϕ_{C}	$\phi_{C} \phi_{A}$	$\phi_{C} \phi_{A} \tilde{\phi}$	$\phi_{C} \phi_{A} \tilde{\phi} \phi_{B}$
0	0	0	4	8	16	$16 \cdot 4$
1	0	0	2	8	16	$16 \cdot 4$
0	1	0	2	8	16	$16 \cdot 4$
1	1	0	6	24	48	$48 \cdot 4$
0	0	1	2	8	8	$8 \cdot 4$
1	0	1	6	24	24	$24 \cdot 4$
0	1	1	6	12	12	$12 \cdot 4$
1	1	1	4	16	16	$16 \cdot 4$

For example, for the column $\phi_{c} \phi_{A}$, we multiply each value of $\phi_{C}\left(x_{1}, x_{2}, x_{3}\right)$ by $\phi_{A}\left(x_{1}\right)$, so that the rows with $x_{1}=0$ get multiplied by 2 , and the rows with $x_{1}=1$ by 4 .
The maximal value in the final column is achieved for $x_{1}=1, x_{2}=1, x_{3}=0$, in line with the result above (and $48 \cdot 4=192$). Since $\phi_{B}\left(x_{2}\right)$ is a constant, being equal to 4 for all values of x_{2}, we could have ignored it in the computation. The formal reason for this is that since the model is unnormalised, we are allowed to rescale each factor by an arbitrary (factor-dependent) constant. This operation does not change the model. So we could divide ϕ_{B} by 4 which would give a value of 1 , so that the factor can indeed be ignored.
(c) Compute $\operatorname{argmax}_{x_{1}, \ldots, x_{5}} p\left(x_{1}, \ldots, x_{5}\right)$ via max-sum message passing with x_{1} as root.

Solution. As discussed in the solution to the answer above, we can drop factor $\phi_{B}\left(x_{2}\right)$ since it takes the same value for all x_{2}. Moreover, we can rescale the individual factors by a constant so they are more amenable to calculations by hand. We normalise them such that the largest value is one, which gives the following factors. Note that this is entirely optional.

The factor graph without ϕ_{B} together with the messages that we need to compute is:

The leaf (log) messages are (using vector notation where the top element corresponds to $x_{i}=0$ and the bottom one to $x_{i}=1$):

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{A} \rightarrow x_{1}}=\binom{0}{\log 2} \quad \boldsymbol{\lambda}_{x_{2} \rightarrow \phi_{C}}=\binom{0}{0} \quad \boldsymbol{\lambda}_{x_{4} \rightarrow \phi_{D}}=\binom{0}{0} \quad \boldsymbol{\lambda}_{\phi_{F} \rightarrow x_{5}}=\binom{0}{\log 8} \tag{S.97}
\end{equation*}
$$

The variable node x_{5} only has one incoming edge so that $\boldsymbol{\lambda}_{x_{5} \rightarrow \phi_{E}}=\boldsymbol{\lambda}_{\phi_{F} \rightarrow x_{5}}$. The message $\lambda_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)$ equals

$$
\begin{equation*}
\lambda_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)=\max _{x_{5}} \log \phi_{E}\left(x_{3}, x_{5}\right)+\lambda_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right) \tag{S.98}
\end{equation*}
$$

Writing out $\log \phi_{E}\left(x_{3}, x_{5}\right)+\lambda_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)$ for all x_{5} as a function of x_{3} we have

x_{5}	$\log \phi_{E}\left(x_{3}=0, x_{5}\right)+\lambda_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)$
0	$\log 1+0=0$
1	$\log 2+\log 8=\log 16$

x_{5}	$\log \phi_{E}\left(x_{3}=1, x_{5}\right)+\lambda_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)$
0	$\log 2+0=\log 2$
1	$\log 1+\log 8=\log 8$

Taking the maximum over x_{5} as a function of x_{3}, we obtain

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{E} \rightarrow x_{3}}=\binom{\log 16}{\log 8} \tag{S.99}
\end{equation*}
$$

and the backtracking function that indicates the maximiser $\hat{x}_{5}=\operatorname{argmax}_{x_{5}} \log \phi_{E}\left(x_{3}, x_{5}\right)+$ $\lambda_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)$ as a function of x_{3} equals

$$
\lambda_{\phi_{E} \rightarrow x_{3}}^{*}\left(x_{3}\right)= \begin{cases}\hat{x}_{5}=1 & \text { if } x_{3}=0 \tag{S.100}\\ \hat{x}_{5}=1 & \text { if } x_{3}=1\end{cases}
$$

We perform the same kind of operation for $\lambda_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)$

$$
\begin{equation*}
\lambda_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)=\max _{x_{4}} \log \phi_{D}\left(x_{3}, x_{4}\right)+\lambda_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right) \tag{S.101}
\end{equation*}
$$

Since $\lambda_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)=0$ for all x_{4}, the table with all values of $\log \phi_{D}\left(x_{3}, x_{4}\right)+\lambda_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)$ is

x_{3}	x_{4}	$\log \phi_{D}\left(x_{3}, x_{4}\right)+\lambda_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)$
0	0	$\log 4+0=\log 4$
1	0	$\log 1+0=0$
0	1	$\log 1+0=0$
1	1	$\log 3+0=\log 3$

Taking the maximum over x_{4} as a function of x_{3} we thus obtain

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{D} \rightarrow x_{3}}=\binom{\log 4}{\log 3} \tag{S.102}
\end{equation*}
$$

and the backtracking function that indicates the maximiser $\hat{x}_{4}=\operatorname{argmax}_{x_{4}} \log \phi_{D}\left(x_{3}, x_{4}\right)+$ $\lambda_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)$ as a function of x_{3} equals

$$
\lambda_{\phi_{D} \rightarrow x_{3}}^{*}\left(x_{3}\right)= \begin{cases}\hat{x}_{4}=0 & \text { if } x_{3}=0 \tag{S.103}\\ \hat{x}_{4}=1 & \text { if } x_{3}=1\end{cases}
$$

For the message $\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$ we add together the messages $\lambda_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)$ and $\lambda_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)$ which gives

$$
\begin{equation*}
\boldsymbol{\lambda}_{x_{3} \rightarrow \phi_{C}}=\binom{\log 16+\log 4}{\log 8+\log 3}=\binom{\log 64}{\log 24} \tag{S.104}
\end{equation*}
$$

Next we compute the message $\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)$ by maximising over x_{2} and x_{3},

$$
\begin{equation*}
\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)=\max _{x_{2}, x_{3}} \log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \tag{S.105}
\end{equation*}
$$

Since $\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)=0$, the problem becomes

$$
\begin{equation*}
\lambda_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)=\max _{x_{2}, x_{3}} \log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \tag{S.106}
\end{equation*}
$$

Building on the table for ϕ_{C}, we form a table with all values of $\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+$ $\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$

x_{1}	x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
0	0	0	$\log 2+\log 64=\log \mathbf{1 2 8}$
1	0	0	$0+\log 64=\log 64$
0	1	0	$0+\log 64=\log 64$
1	1	0	$\log 3+\log 64=\log \mathbf{1 9 2}$
0	0	1	$\log 24$
1	0	1	$\log 3+\log 24=\log 72$
0	1	1	$\log 3+\log 24=\log 72$
1	1	1	$\log 2+\log 24=\log 48$

The maximal value as a function of x_{1} are highlighted in the table, which gives the message

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{C} \rightarrow x_{1}}=\binom{\log 128}{\log 192} \tag{S.107}
\end{equation*}
$$

and the backtracking function

$$
\lambda_{\phi_{C} \rightarrow x_{1}}^{*}\left(x_{1}\right)= \begin{cases}\left(\hat{x}_{2}=0, \hat{x}_{3}=0\right) & \text { if } x_{1}=0 \tag{S.108}\\ \left(\hat{x}_{2}=1, \hat{x}_{3}=0\right) & \text { if } x_{1}=1\end{cases}
$$

We now have all incoming messages to the assigned root node x_{1}. Ignoring the normalising constant, we obtain

$$
\begin{equation*}
\gamma=\binom{\gamma^{*}\left(x_{1}=0\right)}{\gamma^{*}\left(x_{1}=1\right)}=\binom{0+\log 128}{\log 2+\log 192} \tag{S.109}
\end{equation*}
$$

We can now start the backtracking to compute the desired $\operatorname{argmax}_{x_{1}, \ldots, x_{5}} p\left(x_{1}, \ldots, x_{5}\right)$. Starting at the root we have $\hat{x}_{1}=\operatorname{argmax}_{x_{1}} \gamma^{*}\left(x_{1}\right)=1$. Plugging this value into the look-up table $\lambda_{\phi_{C} \rightarrow x_{1}}^{*}\left(x_{1}\right)$, we obtain $\left(\hat{x}_{2}=1, \hat{x}_{3}=0\right)$. With the look-up table $\lambda_{\phi_{E} \rightarrow x_{3}}^{*}\left(x_{3}\right)$ we find $\hat{x}_{5}=1$ and $\lambda_{\phi_{D} \rightarrow x_{3}}^{*}\left(x_{3}\right)$ gives $\hat{x}_{4}=0$ so that overall

$$
\begin{equation*}
\underset{x_{1}, \ldots, x_{5}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{5}\right)=(1,1,0,0,1) . \tag{S.110}
\end{equation*}
$$

(d) Compute $\operatorname{argmax}_{x_{1}, \ldots, x_{5}} p\left(x_{1}, \ldots, x_{5}\right)$ via max-sum message passing with x_{3} as root.

Solution. With x_{3} as root, we need the following messages:

The following messages are the same as when x_{1} was the root:

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{D} \rightarrow x_{3}}=\binom{\log 4}{\log 3} \quad \boldsymbol{\lambda}_{\phi_{E} \rightarrow x_{3}}=\binom{\log 16}{\log 8} \quad \boldsymbol{\lambda}_{\phi_{A} \rightarrow x_{1}}=\binom{0}{\log 2} \quad \boldsymbol{\lambda}_{x_{2} \rightarrow \phi_{C}}=\binom{0}{0} \tag{S.111}
\end{equation*}
$$

Since x_{1} has only one incoming message, we further have

$$
\begin{equation*}
\boldsymbol{\lambda}_{x_{1} \rightarrow \phi_{C}}=\boldsymbol{\lambda}_{\phi_{A} \rightarrow x_{1}}=\binom{0}{\log 2} . \tag{S.112}
\end{equation*}
$$

We next compute $\lambda_{\phi_{C} \rightarrow x_{3}}\left(x_{3}\right)$,

$$
\begin{equation*}
\lambda_{\phi_{C} \rightarrow x_{3}}\left(x_{3}\right)=\max _{x_{1}, x_{2}} \log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right) \tag{S.113}
\end{equation*}
$$

We first form a table for $\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)$ noting that $\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)=$ 0

x_{1}	x_{2}	x_{3}	$\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)+\lambda_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)$
0	0	0	$\log 2+0=\log 2$
1	0	0	$0+\log 2=\log 2$
0	1	0	$0+0=0$
1	1	0	$\log 3+\log 2=\log \mathbf{6}$
0	0	1	$0+0=0$
1	0	1	$\log 3+\log 2=\log \mathbf{6}$
0	1	1	$\log 3+0=\log 3$
1	1	1	$\log 2+\log 2=\log 4$

The maximal value as a function of x_{3} are highlighted in the table, which gives the message

$$
\begin{equation*}
\boldsymbol{\lambda}_{\phi_{C} \rightarrow x_{3}}=\binom{\log 6}{\log 6} \tag{S.114}
\end{equation*}
$$

and the backtracking function

$$
\lambda_{\phi_{C} \rightarrow x_{3}}^{*}\left(x_{3}\right)= \begin{cases}\left(\hat{x}_{1}=1, \hat{x}_{2}=1\right) & \text { if } x_{3}=0 \tag{S.115}\\ \left(\hat{x}_{1}=1, \hat{x}_{2}=0\right) & \text { if } x_{3}=1\end{cases}
$$

We have now all incoming messages for x_{3} and can compute $\gamma^{*}\left(x_{3}\right)$ up the normalising constant $-\log Z$ (which is not needed if we are interested in the argmax only:

$$
\begin{align*}
\gamma & =\binom{\gamma^{*}\left(x_{3}=0\right)}{\gamma^{*}\left(x_{3}=1\right)}=\boldsymbol{\lambda}_{\phi_{C} \rightarrow x_{3}}+\boldsymbol{\lambda}_{\phi_{D} \rightarrow x_{3}}+\boldsymbol{\lambda}_{\phi_{E} \rightarrow x_{3}} \tag{S.116}\\
& =\binom{\log 6+\log 4+\log 16=\log 384}{\log 6+\log 3+\log 8=\log 144} \tag{S.117}
\end{align*}
$$

We can now start the backtracking which gives: $\hat{x}_{3}=0$, so that $\lambda_{\phi_{C} \rightarrow x_{3}}^{*}(0)=\left(\hat{x}_{1}=1, \hat{x}_{2}=\right.$ 1). The backtracking functions $\lambda_{\phi_{E} \rightarrow x_{3}}^{*}\left(x_{3}\right)$ and $\lambda_{\phi_{D} \rightarrow x_{3}}^{*}\left(x_{3}\right)$ are the same for question (c), which gives $\lambda_{\phi_{E} \rightarrow x_{3}}^{*}(0)=\hat{x}_{5}=1$ and $\lambda_{\phi_{D} \rightarrow x_{3}}^{*}(0)=\hat{x}_{4}=0$. Hence, overall, we find

$$
\begin{equation*}
\underset{x_{1}, \ldots, x_{5}}{\operatorname{argmax}} p\left(x_{1}, \ldots, x_{5}\right)=(1,1,0,0,1) \tag{S.118}
\end{equation*}
$$

Note that this matches the result from question (c) where x_{1} was the root. This is because the output of the max-sum algorithm is invariant to the choice of the root.

Exercise 5. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:

Let all variables be binary, $x_{i} \in\{0,1\}$, and the factors be defined as follows:

x_{1}	x_{2}	x_{3}	ϕ_{A}
0	0	0	4
1	0	0	2
0	1	0	2
1	1	0	6
0	0	1	2
1	0	1	6
0	1	1	6
1	1	1	4

x_{2}	x_{3}	x_{4}	ϕ_{B}
0	0	0	2
1	0	0	2
0	1	0	4
1	1	0	2
0	0	1	6
1	0	1	8
0	1	1	4
1	1	1	2

x_{4}	x_{5}	ϕ_{C}
0	0	8
1	0	2
0	1	2
1	1	6

x_{4}	x_{6}	ϕ_{D}
0	0	3
1	0	6
0	1	6
1	1	3

(a) Draw the factor graph corresponding to $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$ and give the tables defining the new factors $\phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$ and $\phi_{D}^{x_{6}=1}\left(x_{4}\right)$ that you obtain.

Solution. First condition on $x_{1}=0$:
Factor node $\phi_{A}\left(x_{1}, x_{2}, x_{3}\right)$ depends on x_{1}, thus we create a new factor $\phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$ from the table for ϕ_{A} using the rows where $x_{1}=0$.

	x_{1}	x_{2}	x_{3}	ϕ_{A}
\rightarrow	0	0	0	4
	1	0	0	2
\rightarrow	0	1	0	2
	1	1	0	6
\rightarrow	0	0	1	2
	1	0	1	6
\rightarrow	0	1	1	6
	1	1	1	4

so that

x_{2}	x_{3}	$\phi_{A}^{x_{1}=0}$
0	0	4
1	0	2
0	1	2
1	1	6

Next condition on $x_{6}=1$:
Factor node $\phi_{D}\left(x_{4}, x_{6}\right)$ depends on x_{6}, thus we create a new factor $\phi_{D}^{x_{6}=1}\left(x_{4}\right)$ from the table for ϕ_{D} using the rows where $x_{6}=1$.

(b) Find $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ using the elimination ordering $\left(x_{4}, x_{5}, x_{3}\right)$:
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{5} \mid x_{1}=\underset{\sim}{0}, x_{6}=1\right)$ by marginalising x_{4} Compute the table for the new factor $\tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5} Compute the table for the new factor $\dot{\phi}_{45}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3} Compute the table for the new factor $\boldsymbol{\phi}_{453}\left(x_{2}\right)$

Solution. Starting with the factor graph for $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$

Marginalising x_{4} combines the three factors ϕ_{B}, ϕ_{C} and $\phi_{D}^{x_{6}=1}$

Marginalising x_{5} modifies the factor $\tilde{\phi}_{4}$

Marginalising x_{3} combines the factors $\phi_{A}^{x_{1}=0}$ and $\tilde{\phi}_{45}$

We now compute the tables for the new factors $\tilde{\phi}_{4}, \tilde{\phi}_{45}, \tilde{\phi}_{453}$.
First find $\tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$

so that $\phi_{*}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)=\phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{4}, x_{5}\right) \phi_{D}^{x_{6}=1}\left(x_{4}\right)$ equals

x_{2}	x_{3}	x_{4}	x_{5}	$\phi_{*}\left(x_{2}, x_{3}, x_{4}, x_{5}\right)$
0	0	0	0	$2 * 8 * 6$
1	0	0	0	$2 * 8 * 6$
0	1	0	0	$4 * 8 * 6$
1	1	0	0	$2 * 8 * 6$
0	0	1	0	$6 * 2 * 3$
1	0	1	0	$8 * 2 * 3$
0	1	1	0	$4 * 2 * 3$
1	1	1	0	$2 * 2 * 3$
0	0	0	1	$2 * 2 * 6$
1	0	0	1	$2 * 2 * 6$
0	1	0	1	$4 * 2 * 6$
1	1	0	1	$2 * 2 * 6$
0	0	1	1	$6 * 6 * 3$
1	0	1	1	$8 * 6 * 3$
0	1	1	1	$4 * 6 * 3$
1	1	1	1	$2 * 6 * 3$

and

x_{2}	x_{3}	x_{5}	$\sum_{x_{4}} \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{4}, x_{5}\right) \phi_{D}^{x_{6}=1}\left(x_{4}\right)$		$\tilde{\phi}_{4}$
0	0	0	$(2 * 8 * 6)+(6 * 2 * 3)$	$=132$	
1	0	0	$(2 * 8 * 6)+(8 * 2 * 3)$	$=144$	
0	1	0	$(4 * 8 * 6)+(4 * 2 * 3)$	$=216$	
1	1	0	$(2 * 8 * 6)+(2 * 2 * 3)$	$=108$	
0	0	1	$(2 * 2 * 6)+(6 * 6 * 3)$	$=132$	
1	0	1	$(2 * 2 * 6)+(8 * 6 * 3)$	$=168$	
0	1	1	$\left(4^{*} 2 * 6\right)+(4 * 6 * 3)$	$=120$	
1	1	1	$(2 * 2 * 6)+(2 * 6 * 3)$	$=60$	

Next find $\tilde{\phi}_{45}\left(x_{2}, x_{3}\right)$

x_{2}	x_{3}	x_{5}	$\tilde{\phi}_{4}$
0	0	0	132
1	0	0	144
0	1	0	216
1	1	0	108
0	0	1	132
1	0	1	168
0	1	1	120
1	1	1	60

x_{2}	x_{3}	$\sum_{x_{5}} \tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$		$\tilde{\phi}_{45}$
0	0	$132+132$	$=$	264
1	0	$144+168$	$=$	312
0	1	$216+120$	$=$	336
1	1	$108+60$	$=$	168

Finally find $\tilde{\phi}_{453}\left(x_{2}\right)$

x_{2}	x_{3}	$\phi_{A}^{x_{1}=0}$
0	0	4
1	0	2
0	1	2
1	1	6

x_{2}	x_{3}	$\tilde{\phi}_{45}$
0	0	264
1	0	312
0	1	336
1	1	168

so that

x_{2}	$\sum_{x_{3}} \tilde{\phi}_{45}\left(x_{2}, x_{3}\right) \phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$		$\tilde{\phi}_{453}$
0	$\left(4^{*} 264\right)+\left(2^{*} 336\right)$	$=$	1728
1	$\left(2^{*} 312\right)+\left(6^{*} 168\right)$	$=$	1632

The normalising constant is $Z=1728+1632$. Our conditional marginal is thus:

$$
\begin{equation*}
p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)=\binom{1728 / Z}{1632 / Z}=\binom{0.514}{0.486} \tag{S.119}
\end{equation*}
$$

(c) Now determine $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ with the elimination ordering $\left(x_{5}, x_{4}, x_{3}\right)$:
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{4}, \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5} Compute the table for the new factor $\tilde{\phi}_{5}\left(x_{4}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{4} Compute the table for the new factor $\tilde{\phi}_{54}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3}

Compute the table for the new factor $\tilde{\phi}_{543}\left(x_{2}\right)$

Solution. Starting with the factor graph for $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$

Marginalising x_{5} modifies the factor ϕ_{C}

Marginalising x_{4} combines the three factors $\phi_{B}, \tilde{\phi}_{5}$ and $\phi_{D}^{x_{6}=1}$

Marginalising x_{3} combines the factors $\phi_{A}^{x_{1}=0}$ and $\tilde{\phi}_{54}$

We now compute the tables for the new factors $\tilde{\phi}_{5}, \tilde{\phi}_{54}$, and $\tilde{\phi}_{543}$.
First find $\tilde{\phi}_{5}\left(x_{4}\right)$

x_{4}	x_{5}	ϕ_{C}
0	0	8
1	0	2
0	1	2
1	1	6

so that

x_{4}	$\sum_{x_{5}} \phi_{C}\left(x_{4}, x_{5}\right)$		$\tilde{\phi}_{5}$
0	$8+2$	$=$	10
1	$2+6$	$=$	8

Next find $\tilde{\phi}_{54}\left(x_{2}, x_{3}\right)$

so that $\phi_{*}\left(x_{2}, x_{3}, x_{4}\right)=\phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{4}\right) \phi_{D}^{x_{6}=1}\left(x_{4}\right)$ equals

x_{2}	x_{3}	x_{4}	$\phi_{*}\left(x_{2}, x_{3}, x_{4}\right)$
0	0	0	$2 * 10 * 6$
1	0	0	$2 * 10 * 6$
0	1	0	$4 * 10 * 6$
1	1	0	$2 * 10 * 6$
0	0	1	$6 * 8 * 3$
1	0	1	$8 * 8 * 3$
0	1	1	$4 * 8 * 3$
1	1	1	$2 * 8 * 3$

and

| x_{2} | x_{3} | $\sum_{x_{4}} \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{4}\right) \phi_{D}^{x_{6}=1}\left(x_{4}\right)$ | $\tilde{\phi}_{54}$ |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | $(2 * 10 * 6)+(6 * 8 * 3)$ | $=264$ |
| 1 | 0 | $(2 * 10 * 6)+(8 * 8 * 3)$ | $=312$ |
| 0 | 1 | $(4 * 10 * 6)+(4 * 8 * 3)$ | $=336$ |
| 1 | 1 | $(2 * 10 * 6)+(2 * 8 * 3)$ | $=168$ |

Finally find $\tilde{\phi}_{543}\left(x_{2}\right)$

x_{2}	x_{3}	$\phi_{A}^{x_{1}=0}$				
0	0	4				
x_{2}	x_{3}	$\tilde{\phi}_{54}$				
	0	2				
0	1	2				
1	1	6				

so that

x_{2}	$\sum_{x_{3}} \tilde{\phi}_{54}\left(x_{2}, x_{3}\right) \phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$		$\tilde{\phi}_{543}$
0	$\left(4^{*} 264\right)+(2 * 336)$	$=$	1728
1	$(2 * 312)+\left(6^{*} 168\right)$	$=$	1632

As with the ordering in the previous part, we should come to the same result for our conditional marginal distribution. The normalising constant is $Z=1728+1632$, so that the conditional marginal is

$$
\begin{equation*}
p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)=\binom{1728 / Z}{1632 / Z}=\binom{0.514}{0.486} \tag{S.120}
\end{equation*}
$$

(d) Which variable ordering, $\left(x_{4}, x_{5}, x_{3}\right)$ or $\left(x_{5}, x_{4}, x_{3}\right)$ do you prefer?

Solution. The ordering $\left(x_{5}, x_{4}, x_{3}\right)$ is cheaper and should be preferred over the ordering $\left(x_{4}, x_{5}, x_{3}\right)$.
The reason for the difference in the cost is that x_{4} has three neighbours in the factor graph for $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$. However, after elimination of x_{5}, which has only one neighbour, x_{4} has only two neighbours left. Eliminating variables with more neighbours leads to larger (temporary) factors and hence a larger cost. We can see this from the tables that were generated during the computation (or numbers that we needed to add together): for the ordering $\left(x_{4}, x_{5}, x_{3}\right)$, the largest table had 2^{4} entries while for $\left(x_{5}, x_{4}, x_{3}\right)$, it had 2^{3} entries.

Choosing a reasonable variable ordering has a direct effect on the computational complexity of variable elimination. This effect becomes even more pronounced when the domain of our discrete variables has a size greater than 2 (binary variables), or if the variables are continuous.

Exercise 6. Choice of elimination order in factor graphs

We would like to compute the marginal $p\left(x_{1}\right)$ by variable elimination for a joint pmf represented by the following factor graph. All variables x_{i} can take K different values.

(a) A friend proposes the elimination order $x_{4}, x_{5}, x_{6}, x_{7}, x_{3}, x_{2}$, i.e. to do x_{4} first and x_{2} last. Explain why this is computationally inefficient.

Solution. According to the factor graph, $p\left(x_{1}, \ldots, x_{7}\right)$ factorises as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{7}\right) \propto \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \phi_{e}\left(x_{6}, x_{4}\right) \phi_{f}\left(x_{7}, x_{4}\right) \tag{S.121}
\end{equation*}
$$

If we choose to eliminate x_{4} first, i.e. compute

$$
\begin{align*}
p\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}\right) & =\sum_{x_{4}} p\left(x_{1}, \ldots, x_{7}\right) \tag{S.122}\\
& \propto \sum_{x_{4}} \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \phi_{e}\left(x_{6}, x_{4}\right) \phi_{f}\left(x_{7}, x_{4}\right) \tag{S.123}
\end{align*}
$$

we cannot pull any of the factors out of the sum since each of them depends on x_{4}. This means the cost to sum out x_{4} for all combinations of the six variables $\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}\right)$ is K^{7}. Moreover, the new factor

$$
\begin{equation*}
\tilde{\phi}\left(x_{1}, x_{2}, x_{3}, x_{5}, x_{6}, x_{7}\right)=\sum_{x_{4}} \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \phi_{e}\left(x_{6}, x_{4}\right) \phi_{f}\left(x_{7}, x_{4}\right) \tag{S.124}
\end{equation*}
$$

does not factorise anymore so that subsequent variable eliminations will be expensive too.
(b) Propose an elimination ordering that achieves $O\left(K^{2}\right)$ computational cost per variable elimination and explain why it does so.

Solution. Any ordering where x_{4} is eliminated last will do. At any stage, elimination of one of the variables $x_{2}, x_{3}, x_{5}, x_{6}, x_{7}$ is then a $O\left(K^{2}\right)$ operation. This is because e.g.

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{6}\right) & =\sum_{x_{7}} p\left(x_{1}, \ldots, x_{7}\right) \tag{S.125}\\
& \propto \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \phi_{e}\left(x_{6}, x_{4}\right) \underbrace{\sum_{x_{7}} \phi_{f}\left(x_{7}, x_{4}\right)}_{\tilde{\phi}_{7}\left(x_{4}\right)} \tag{S.126}\\
& \propto \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \phi_{e}\left(x_{6}, x_{4}\right) \tilde{\phi}_{7}\left(x_{4}\right) \tag{S.127}
\end{align*}
$$

where computing $\tilde{\phi}_{7}\left(x_{4}\right)$ for all values of x_{4} is $O\left(K^{2}\right)$. Further,

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{5}\right) & =\sum_{x_{6}} p\left(x_{1}, \ldots, x_{6}\right) \tag{S.128}\\
& \propto \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \tilde{\phi}_{7}\left(x_{4}\right) \sum_{x_{6}} \phi_{e}\left(x_{6}, x_{4}\right) \tag{S.129}\\
& \propto \phi_{a}\left(x_{1}, x_{4}\right) \phi_{b}\left(x_{2}, x_{4}\right) \phi_{c}\left(x_{3}, x_{4}\right) \phi_{d}\left(x_{5}, x_{4}\right) \tilde{\phi}_{7}\left(x_{4}\right) \tilde{\phi}_{6}\left(x_{4}\right) \tag{S.130}
\end{align*}
$$

where computation of $\tilde{\phi}_{6}\left(x_{4}\right)$ for all values of x_{4} is again $O\left(K^{2}\right)$. Continuing in this manner, one obtains

$$
\begin{equation*}
p\left(x_{1}, x_{4}\right) \propto \phi_{a}\left(x_{1}, x_{4}\right) \tilde{\phi}_{2}\left(x_{4}\right) \tilde{\phi}_{3}\left(x_{4}\right) \tilde{\phi}_{5}\left(x_{4}\right) \tilde{\phi}_{6}\left(x_{4}\right) \tilde{\phi}_{7}\left(x_{4}\right) \tag{S.131}
\end{equation*}
$$

where each derived factor $\tilde{\phi}$ has $O\left(K^{2}\right)$ cost. Summing out x_{4} and normalising the pmf is again a $O\left(K^{2}\right)$ operation.

