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Exercises for the tutorials: 2 and 4.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

p(x1, . . . , x5) ∝ φ12(x1, x2)φ13(x1, x3)φ14(x1, x4)φ23(x2, x3)φ25(x2, x5)φ45(x4, x5)

(a) Visualise it as an undirected graph.

(b) What are the neighbours of x3 in the graph?

(c) Do we have x3 ⊥⊥ x4 | x1, x2?

(d) What is the Markov blanket of x4?

(e) On which minimal set of variables A do we need to condition to have x1 ⊥⊥ x5 | A?

Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the graph in Figure 1.
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Figure 1: Graph for Exercise 2

(a) What is the set of Gibbs distributions that is induced by the graph?

(b) Let p be a pdf that factorises according to the graph. Does p(x3|x2, x4) = p(x3|x4) hold?

(c) Explain why x2 ⊥⊥ x5 | x1, x3, x4, x6 holds for all distributions that factorise over the
graph.

(d) Assume you would like to approximate E(x1x2x5 | x3, x4), i.e. the expected value of the
product of x1, x2, and x5 given x3 and x4, with a sample average. Do you need to have
joint observations for all five variables x1, . . . , x5?
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Exercise 3. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a
diamond configuration.
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(a) How do the pdfs/pmfs of the undirected graphical model factorise?

(b) List all independencies that hold for the undirected graphical model.

Exercise 4. Factorisation from the Markov blankets I

Assume you know the following Markov blankets for all variables x1, . . . , x4, y1, . . . y4 of a pdf or
pmf p(x1, . . . , x4, y1, . . . , y4).

MB(x1) = {x2, y1} MB(x2) = {x1, x3, y2} MB(x3) = {x2, x4, y3} MB(x4) = {x3, y4} (1)

MB(y1) = {x1} MB(y2) = {x2} MB(y3) = {x3} MB(y4) = {x4} (2)

Assuming that p is positive for all possible values of its variables, how does p factorise?

Exercise 5. Factorisation from the Markov blankets II

We consider the same setup as in Exercise 4 but we now assume that we do not know all Markov
blankets but only

MB(x1) = {x2, y1} MB(x2) = {x1, x3, y2} MB(x3) = {x2, x4, y3} MB(x4) = {x3, y4} (3)

Without inserting more independencies than those specified by the Markov blankets, draw the
graph over which p factorises and state the factorisation. (Again assume that p is positive for
all possible values of its variables).

Exercise 6. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time.
The probability density or mass functions over d random variables x1, . . . , xd then take the form

p(x1, . . . , xd) ∝
∏
i≤j

φij(xi, xj)

Such models are sometimes called pairwise Markov networks.

(a) Let p(x1, . . . , xd) ∝ exp
(
−1

2x
>Ax− b>x

)
where A is symmetric and x = (x1, . . . , xd)>.

What are the corresponding factors φij for i ≤ j?

(b) For p(x1, . . . , xd) ∝ exp
(
−1

2x
>Ax− b>x

)
, show that xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj} if

the (i, j)-th element of A is zero.
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Exercise 7. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v =
(v1, . . . , vn)> and h = (h1, . . . , hm)> with a probability mass function equal to

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
, (4)

where W is a n × m matrix. Both the vi and hi take values in {0, 1}. The vi are called the
“visibles” variables since they are assumed to be observed while the hi are the hidden variables
since it is assumed that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

p(h|v) =
m∏
i=1

p(hi|v).

(b) Show that

p(hi = 1|v) =
1

1 + exp
(
−bi −

∑
j Wjivj

) (5)

where Wji is the (ji)-th element of W, so that
∑

j Wjivj is the inner product (scalar
product) between the i-th column of W and v.

(c) Use a symmetry argument to show that

p(v|h) =
∏
i

p(vi|h) and p(vi = 1|h) =
1

1 + exp
(
−ai −

∑
j Wijhj

)

Exercise 8. Hidden Markov models and change of measure

Consider the following undirected graph for a hidden Markov model where the yi correspond to
observed (visible) variables and the xi to unobserved (hidden/latent) variables.

x1 x2 x3 . . .

. . .

xt

y1 y2 y3 yt

The graph implies the following factorisation

p(x1, . . . , xt, y1, . . . , yt) ∝ φy1(x1, y1)
t∏

i=2

φxi (xi−1, xi)φ
y
i (xi, yi), (6)

where the φxi and φyi are non-negative factors.

Let us consider the situation where
∏t

i=2 φ
x
i (xi−1, xi) equals

f(x) =

t∏
i=2

φxi (xi−1, xi) = f1(x1)

t∏
i=2

fi(xi|xi−1), (7)
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with x = (x1, . . . , xt) and where the fi are (conditional) pdfs. We thus have

p(x1, . . . , xt, y1, . . . , yt) ∝ f1(x1)
t∏

i=2

fi(xi|xi−1)
t∏

i=1

φyi (xi, yi). (8)

(a) Provide a factorised expression for p(x1, . . . , xt|y1, . . . , yt)

(b) Draw the undirected graph for p(x1, . . . , xt|y1, . . . , yt)

(c) Show that if φyi (xi, yi) equals the conditional pdf of yi given xi, i.e. p(yi|xi), the marginal
p(x1, . . . , xt), obtained by integrating out y1, . . . , yt from (8), equals f(x).

(d) Compute the normalising constant for p(x1, . . . , xt|y1, . . . , yt) and express it as an expec-
tation over f(x).

(e) Express the expectation of a test function h(x) with respect to p(x1, . . . , xt|y1, . . . , yt) as
a reweighted expectation with respect to f(x).
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