Estimating Unnormalised Models by Score Matching

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2022

- 1. Basics of score matching
- 2. Practical objective function for score matching

Program

1. Basics of score matching

- Basic ideas of score matching
- Objective function that captures the basic ideas but cannot be computed

2. Practical objective function for score matching

Problem formulation

- ▶ We want to estimate the parameters θ of a parametric statistical model for a random vector $\mathbf{x} \in \mathbb{R}^d$.
- Given: data $\mathbf{x}_i, \ldots, \mathbf{x}_n$, iid, following p_*
- Model pdf: $p(\mathbf{x}; \boldsymbol{\theta})$
- Assumptions:

• Model $p(\mathbf{x}; \boldsymbol{\theta})$ is known only up the partition function

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})} \qquad \qquad Z(\boldsymbol{\theta}) = \int_{\mathbf{x}} \tilde{p}(\mathbf{x}; \boldsymbol{\theta}) \mathrm{d}\mathbf{x}$$

- Evaluation of $\tilde{p}(\mathbf{x}; \boldsymbol{\theta})$ is tractable.
- Partition function $Z(\theta)$ cannot be computed analytically in closed form and numerical approximation is expensive.

• Goal: Estimate the model without approximating the partition function $Z(\theta)$.

Basic ideas of score matching

Maximum likelihood estimation can be understood to find parameter values $\hat{\theta}$ so that

$$p(\mathbf{x}; \hat{\boldsymbol{ heta}}) pprox p_*(\mathbf{x})$$
 or $\log p(\mathbf{x}; \hat{\boldsymbol{ heta}}) pprox \log p_*(\mathbf{x})$

(as measured by Kullback-Leibler divergence, see e.g. Barber 8.7)

Instead of estimating the parameters θ by matching (log) densities, score matching identifies parameter values $\hat{\theta}$ for which the derivatives (slopes) of the log densities match

$$abla_{\mathbf{x}} \log p(\mathbf{x}; \hat{\boldsymbol{\theta}}) \approx
abla_{\mathbf{x}} \log p_{*}(\mathbf{x})$$

 \triangleright $\nabla_{\mathbf{x}} \log p(\mathbf{x}; \boldsymbol{\theta})$ does not depend on the partition function:

 $\nabla_{\mathbf{x}} \log p(\mathbf{x}; \boldsymbol{\theta}) = \nabla_{\mathbf{x}} \left[\log \tilde{p}(\mathbf{x}; \boldsymbol{\theta}) - \log Z(\boldsymbol{\theta}) \right] = \nabla_{\mathbf{x}} \log \tilde{p}(\mathbf{x}; \boldsymbol{\theta})$

The score function (in the context of score matching)

▶ Define the model score function $\mathbb{R}^d \to \mathbb{R}^d$ as

$$\psi(\mathbf{x}; \boldsymbol{\theta}) = \begin{pmatrix} \frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial x_1} \\ \vdots \\ \frac{\partial \log p(\mathbf{x}; \boldsymbol{\theta})}{\partial x_d} \end{pmatrix} = \nabla_{\mathbf{x}} \log p(\mathbf{x}; \boldsymbol{\theta})$$

While defined in terms of $p(\mathbf{x}; \boldsymbol{\theta})$, we also have

$$\psi(\mathsf{x}; oldsymbol{ heta}) =
abla_{\mathsf{x}} \log \widetilde{p}(\mathsf{x}; oldsymbol{ heta})$$

Similarly, define the data score function as

$${oldsymbol{\psi}}_*({f x}) =
abla_{f x} \log
ho_*({f x})$$

Definition of the SM objective function

Estimate θ by minimising a distance between model score function $\psi(\mathbf{x}; \theta)$ and score function of observed data $\psi_*(\mathbf{x})$

$$egin{aligned} &J_{ ext{sm}}(oldsymbol{ heta}) = rac{1}{2} \int_{\mathbf{x} \in \mathbb{R}^d} p_*(\mathbf{x}) \| \psi(\mathbf{x};oldsymbol{ heta}) - \psi_*(\mathbf{x}) \|^2 d\mathbf{x} \ &= rac{1}{2} \mathbb{E}_* \| \psi(\mathbf{x};oldsymbol{ heta}) - \psi_*(\mathbf{x}) \|^2 \end{aligned}$$

where \mathbb{E}_* denotes the expectation \mathbb{E}_{p_*} with respect to $p_*(\mathbf{x})$

- Since $\psi(\mathbf{x}; \theta) = \nabla_{\mathbf{x}} \log \tilde{p}(\mathbf{x}; \theta)$ does not depend on $Z(\theta)$ there is no need to compute the partition function.
- Knowing the unnormalised model $\tilde{p}(\mathbf{x}; \boldsymbol{\theta})$ is enough.
- Expectation \mathbb{E}_* with respect to p_* can be approximated as sample average over the observed data, but what about ψ_* ?

Program

1. Basics of score matching

- Basic ideas of score matching
- Objective function that captures the basic ideas but cannot be computed

2. Practical objective function for score matching

1. Basics of score matching

- 2. Practical objective function for score matching
 - Integration by parts to obtain a computable objective function
 - Simple example

Reformulation of the SM objective function

- In the objective function we have the score function of the data distribution ψ_* . How to compute it?
- ▶ In fact, no need to compute it because the score matching objective function J_{sm} can be expressed as

$$J_{\mathrm{sm}}(oldsymbol{ heta}) = \mathbb{E}_* \sum_{j=1}^d \left[\partial_j \psi_j(\mathbf{x};oldsymbol{ heta}) + rac{1}{2} \psi_j^2(\mathbf{x};oldsymbol{ heta})
ight] + \mathrm{const.}$$

where the constant does not depend on heta, and

$$\psi_j(\mathbf{x}; \boldsymbol{\theta}) = \frac{\partial \log \tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j} \qquad \partial_j \psi_j(\mathbf{x}; \boldsymbol{\theta}) = \frac{\partial^2 \log \tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j^2}$$

Proof (general idea)

 \blacktriangleright Use Euclidean distance and expand the objective function $J_{
m sm}$

$$egin{aligned} &J_{ ext{sm}}(oldsymbol{ heta}) &= rac{1}{2} \mathbb{E}_* \| \psi(\mathbf{x};oldsymbol{ heta}) - \psi_*(\mathbf{x}) \|^2 \ &= rac{1}{2} \mathbb{E}_* \| \psi(\mathbf{x};oldsymbol{ heta}) \|^2 - \mathbb{E}_* \left[\psi(\mathbf{x};oldsymbol{ heta})^ op \psi_*(\mathbf{x})
ight] + rac{1}{2} \mathbb{E}_* \| \psi_*(\mathbf{x}) \|^2 \ &= rac{1}{2} \mathbb{E}_* \| \psi(\mathbf{x};oldsymbol{ heta}) \|^2 - \sum_{j=1}^d \mathbb{E}_* \left[\psi_j(\mathbf{x};oldsymbol{ heta}) \psi_{*,j}(\mathbf{x})
ight] + ext{const} \end{aligned}$$

The trick is to use integration by parts for the second term to get an objective function which does not involve ψ_* .

Proof (not examinable)

$$\begin{split} \mathbb{E}_* \left[\psi_j(\mathbf{x}; \boldsymbol{\theta}) \psi_{*,j}(\mathbf{x}) \right] &= \int_{\mathbf{x}} p_*(\mathbf{x}) \psi_{*,j}(\mathbf{x}) \psi_j(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x} \\ &= \int_{\mathbf{x}} p_*(\mathbf{x}) \frac{\partial \log p_*(\mathbf{x})}{\partial x_j} \psi_j(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x} \\ &= \prod_{k \neq j} \int_{x_k} \left(\int_{x_j} p_*(\mathbf{x}) \frac{\partial \log p_*(\mathbf{x})}{\partial x_j} \psi_j(\mathbf{x}; \boldsymbol{\theta}) dx_j \right) dx_k \\ &= \prod_{k \neq j} \int_{x_k} \left(\int_{x_j} \frac{\partial p_*(\mathbf{x})}{\partial x_j} \psi_j(\mathbf{x}; \boldsymbol{\theta}) dx_j \right) dx_k \end{split}$$

Use integration by parts

$$\begin{split} \int_{x_j} \frac{\partial p_*(\mathbf{x})}{\partial x_j} \psi_j(\mathbf{x}; \boldsymbol{\theta}) dx_j &= \left[p_*(\mathbf{x}) \psi_j(\mathbf{x}; \boldsymbol{\theta}) \right]_{a_j}^{b_j} - \int_{x_j} p_*(\mathbf{x}) \frac{\partial \psi_j(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j} dx_j \\ &= - \int_{x_j} p_*(\mathbf{x}) \frac{\partial \psi_j(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j} dx_j, \end{split}$$

where the a_j and b_j specify the boundaries of the data pdf p_* along dimension jand where we assume that $[p_*(\mathbf{x})\psi_j(\mathbf{x};\boldsymbol{\theta})]_{a_j}^{b_j} = 0$.

PMR – Score Matching – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 © (i)

Proof (not examinable)

$$\begin{aligned} \text{If } \left[p_*(\mathbf{x})\psi_j(\mathbf{x};\boldsymbol{\theta})\right]_{a_j}^{b_j} &= 0: \\ \mathbb{E}_*\left[\psi_j(\mathbf{x};\boldsymbol{\theta})\psi_{*,j}(\mathbf{x})\right] &= -\prod_{k\neq j}\int_{x_k}\left(\int_{x_j}p_*(\mathbf{x})\frac{\partial\psi_j(\mathbf{x};\boldsymbol{\theta})}{\partial x_j}dx_j\right)dx_k \\ &= -\int_{\mathbf{x}}p_*(\mathbf{x})\frac{\partial\psi_j(\mathbf{x};\boldsymbol{\theta})}{\partial x_j}d\mathbf{x} \\ &= -\mathbb{E}_*\left[\partial_j\psi_j(\mathbf{x};\boldsymbol{\theta})\right] \end{aligned}$$

so that

$$egin{split} J_{ ext{sm}}(oldsymbol{ heta}) &= rac{1}{2} \mathbb{E}_* \|oldsymbol{\psi}(\mathbf{x};oldsymbol{ heta})\|^2 - \sum_{j=1}^d -\mathbb{E}_* \left[\partial_j \psi_j(\mathbf{x};oldsymbol{ heta})
ight] + ext{const} \ &= \mathbb{E}_* \sum_{j=1}^d \left[\partial_j \psi_j(\mathbf{x};oldsymbol{ heta}) + rac{1}{2} \psi_j^2(\mathbf{x};oldsymbol{ heta})
ight] + ext{const} \end{split}$$

Replacing the expectation / integration over the data density p_* by a sample average over the observed data gives a computable objective function for score matching.

PMR – Score Matching – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 © (i)

Final method of score matching

• Given iid data $\mathbf{x}_1, \ldots, \mathbf{x}_n$, the score matching estimate is

$$\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$
$$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \left[\partial_{j} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta}) + \frac{1}{2} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta})^{2} \right]$$

 ψ_j is the partial derivative of the log unnormalised model log \tilde{p} with respect to the *j*-th coordinate (slope) and $\partial_j \psi_j$ its second partial derivative (curvature).

Parameter estimation with intractable partition functions without approximating the partition function.

$J(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{d} \left[\partial_{j} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta}) + \frac{1}{2} \psi_{j}(\mathbf{x}_{i}; \boldsymbol{\theta})^{2} \right]$

Requirements:

- technical (from the proof): [p_{*}(**x**)ψ_j(**x**; θ)]^{b_j}_{a_j} = 0, where the a_j and b_j specify the boundaries of the data pdf p_{*} along dimension j
- smoothness: second derivatives of log p̃(x; θ) with respect to the x_j need to exist, and should be smooth with respect to θ so that J(θ) can be optimised with gradient-based methods.

Simple example

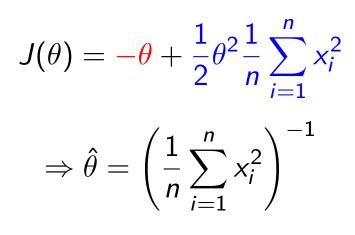
▶ $\tilde{p}(x;\theta) = \exp(-\theta x^2/2)$, parameter $\theta > 0$ is the precision.

The slope and curvature of the log unnormalised model are

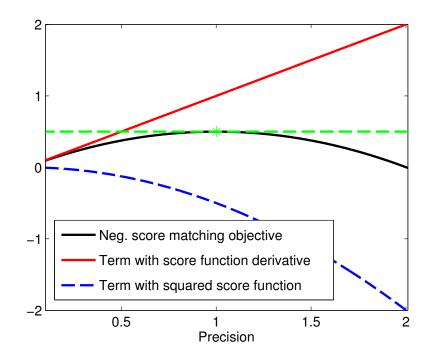
$$\psi(x; \theta) = \partial_x \log \tilde{p}(x; \theta) = -\theta x, \qquad \partial_x \psi(x; \theta) = -\theta.$$

▶ If p_* is Gaussian, $\lim_{x\to\pm\infty} p_*(x)\psi(x;\theta) = 0$ for all θ .

Score matching objective



► For Gaussians, same as the MLE.



PMR – Score Matching – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

- ► Score matching as presented here only works for $\mathbf{x} \in \mathbb{R}^d$
- There are extensions for discrete and non-negative random variables (not examinable)

https://www.cs.helsinki.fi/u/ahyvarin/papers/CSDA07.pdf

Can be shown to be part of a general framework to estimate unnormalised models (not examinable)

https://michaelgutmann.github.io/assets/papers/Gutmann2011b.pdf

Overall message: in some situations, other learning criteria than maximum likelihood are preferable.

1. Basics of score matching

- Basic ideas of score matching
- Objective function that captures the basic ideas but cannot be computed

2. Practical objective function for score matching

- Integration by parts to obtain a computable objective function
- Simple example