## Basics of Model-Based Learning

#### Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2022

### Recap

$$p(\mathbf{x}|\mathbf{y}_o) = rac{\sum_{\mathbf{z}} p(\mathbf{x},\mathbf{y}_o,\mathbf{z})}{\sum_{\mathbf{x},\mathbf{z}} p(\mathbf{x},\mathbf{y}_o,\mathbf{z})}$$

Assume that  $\mathbf{x}, \mathbf{y}, \mathbf{z}$  each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

Issue 1: To specify p(x, y, z), we need to specify K<sup>3d</sup> - 1 = 10<sup>1500</sup> - 1 non-negative numbers, which is impossible.

Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent  $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ ?

- Directed and undirected graphical models, factor graphs
- Factorisation and independencies

## Recap

$$p(\mathbf{x}|\mathbf{y}_{o}) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z})}$$

▶ Issue 2: The sum in the numerator goes over the order of  $K^d = 10^{500}$  non-negative numbers and the sum in the denominator over the order of  $K^{2d} = 10^{1000}$ , which is impossible to compute.

Topic 2: Exact inference Can we further exploit the assumptions on  $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$  to efficiently compute the posterior probability or derived quantities?

- Yes! Factorisation can be exploited by using the distributive law and by caching computations.
- Variable elimination and message passing algorithms
- Inference for hidden Markov models

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

Issue 3: Where do the non-negative numbers p(x, y, z) come from?

Topic 3: Learning How can we learn the numbers from data?

- 1. Basic concepts
- 2. Learning by maximum likelihood estimation
- 3. Learning by Bayesian inference

## Program

#### 1. Basic concepts

• Observed data as a sample drawn from an unknown data generating distribution

- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning = parameter estimation or learning = Bayesian inference

### 2. Learning by maximum likelihood estimation

#### 3. Learning by Bayesian inference

## Learning from data

 $\blacktriangleright$  Use observed data  ${\cal D}$  to learn about their source

Enables probabilistic inference, decision making, ...



▶ We typically assume that the observed data  $\mathcal{D}$  correspond to a random sample (draw) from an unknown distribution  $p_*(\mathcal{D})$ 

 $\mathcal{D} \sim p_*(\mathcal{D})$ 

In other words, we consider the data  $\mathcal{D}$  to be a realisation (observation) of a random variable with distribution  $p_*$ .



Example: You use some transition and emission distribution and generate data from the hidden Markov model. (e.g. via ancestral sampling)



- ▶ You know the visibles  $(v_1, v_2, v_3, \ldots, v_T) \sim p(v_1, \ldots, v_T)$ .
- You give the generated visibles to a friend who does not know about the distributions that you used, nor possibly that you used a HMM. For your friend:

$$\mathcal{D} = (v_1, v_2, v_3, \dots, v_T) \qquad \mathcal{D} \sim p_*(\mathcal{D})$$

## Independent and identically distributed (iid) data

• Let  $\mathcal{D} = \{\mathbf{x}_1, \ldots, \mathbf{x}_n\}$ . If

$$p_*(\mathcal{D}) = \prod_{i=1}^n p_*(\mathbf{x}_i)$$

then the data (or the corresponding random variables) are said to the iid.  $\mathcal{D}$  is also said to be a random sample from  $p_*$ .

- In other words, the  $\mathbf{x}_i$  were independently drawn from the same distribution  $p_*(\mathbf{x})$ .
- Example: n time series (v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, ..., v<sub>T</sub>) each independently generated with the same transition and emission distribution.

## Independent and identically distributed (iid) data

Example: Generate *n* samples  $(x_1^{(i)}, \ldots, x_5^{(i)})$  from

 $p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_3)p(x_5|x_2)$ 

with known conditionals, using e.g. ancestral sampling.

You collect the *n* observed values of x<sub>4</sub>, i.e.

$$x_4^{(1)}, \ldots, x_4^{(n)}$$

and give them to a friend who does not know how you generated the data but that they are iid.



- For your friend, the  $x_4^{(i)}$  are data points  $x_i \sim p_*$ .
- Remark: if the subscript index is occupied, we often use superscripts to enumerate the data points.

## Using models to learn from data

- Set up a model with properties that the unknown data source might have.
- > The potential properties are the parameters  $\theta$  of the model.
- Model may include independence assumptions.
- $\blacktriangleright$  Learning: Assess which  $\theta$  are in line with the observed data  $\mathcal{D}$ .



## Models

- The term "model" has multiple meanings, see e.g. https://en.wikipedia.org/wiki/Model
- In our course:
  - probabilistic model
  - statistical model
  - Bayesian model
- See Section 3 in the background document Introduction to Probabilistic Modelling
- Note: the three types are often confounded, and often just called probabilistic or statistical model, or just "model".

## Probabilistic model

Example from the first lecture: cognitive impairment test

- Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)
- Probabilistic model for presence of impairment (x = 1) and detection by the test (y = 1):

$$\mathbb{P}(x=1) = 0.11$$
 (prior)  
 $\mathbb{P}(y=1|x=1) = 0.8$  (sensitivity)  
 $\mathbb{P}(y=0|x=0) = 0.95$  (specificity)



(Example from sagetest.osu.edu)

From first lecture:

A probabilistic model is an abstraction of reality that uses probability theory to quantify the chance of uncertain events.

## Probabilistic model

More technically:

probabilistic model  $\equiv$  probability distribution (pmf/pdf).

Probabilistic model was written in terms of the probability P. In terms of the pmf it is

 $egin{aligned} p_x(1) &= 0.11 \ p_{y|x}(1|1) &= 0.8 \ p_{y|x}(0|0) &= 0.95 \end{aligned}$ 

Commonly written as

$$p(x = 1) = 0.11$$
  
 $p(y = 1 | x = 1) = 0.8$   
 $p(y = 0 | x = 0) = 0.95$ 

where the notation for probability measure  $\mathbb{P}$  and pmf p are confounded.

PMR – Basics of Model-Based Learning – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

## Statistical model

If we substitute the numbers with parameters, we obtain a (parametric) statistical model

$$p(x = 1) = \theta_1$$
$$p(y = 1 | x = 1) = \theta_2$$
$$p(y = 0 | x = 0) = \theta_3$$

For each value of the θ<sub>i</sub>, we obtain a different pmf. Dependency highlighted by writing

$$p(x = 1; \theta_1) = \theta_1$$
$$p(y = 1 | x = 1; \theta_2) = \theta_2$$
$$p(y = 0 | x = 0; \theta_3) = \theta_3$$

• Or:  $p(x, y; \theta)$  where  $\theta = (\theta_1, \theta_2, \theta_3)$  is a vector of parameters.

A statistical model corresponds to a set of probabilistic models, here indexed by the parameters  $\theta$ :  $\{p(\mathbf{x}; \theta)\}_{\theta}$ 

## Bayesian model

- ln *Bayesian* models, we combine statistical models with a (prior) probability distribution on the parameters  $\theta$ .
- Each member of the family {p(x; θ)}<sub>θ</sub> is considered a conditional pmf/pdf of x given θ
- Use conditioning notation  $p(\mathbf{x}|\boldsymbol{\theta})$
- The conditional p(x|θ) and the pmf/pdf p(θ) for the (prior) distribution of θ together specify the joint pmf/pdf via the product rule

$$p(\mathbf{x}, \boldsymbol{ heta}) = p(\mathbf{x}|\boldsymbol{ heta}) p(\boldsymbol{ heta})$$

- ▶ Bayesian model for  $\mathbf{x} = \text{probabilistic model for } (\mathbf{x}, \boldsymbol{\theta})$ .
- The prior may be parametrised, e.g.  $p(\theta; \alpha)$ . The parameters  $\alpha$  are called "hyperparameters".

## Graphical models as statistical models

Directed or undirected graphical models are sets of probability distributions, e.g. all p that factorise as

$$p(\mathbf{x}) = \prod_{i} k_i(x_i | \text{pa}_i) \text{ or } p(\mathbf{x}) \propto \prod_{i} \phi_i(\mathcal{X}_i)$$

They are thus statistical models.

▶ If we consider parametric families for  $k_i(x_i|\text{pa}_i)$  and  $\phi_i(\mathcal{X}_i)$ , they correspond to parametric statistical models

$$p(\mathbf{x}; \boldsymbol{\theta}) = \prod_{i} k_i(x_i | \text{pa}_i; \boldsymbol{\theta}_i) \text{ or } p(\mathbf{x}; \boldsymbol{\theta}) \propto \prod_{i} \phi_i(\mathcal{X}_i; \boldsymbol{\theta}_i)$$

where  $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \ldots).$ 

(on the next slides: will use again that  $k_i(x_i | pa_i) = p(x_i | pa_i)$ )

## Cancer-asbestos-smoking example (Barber Figure 9.4)

Very simple toy example about the relationship between lung Cancer, Asbestos exposure, and Smoking

DAG:

Parametric models: (for binary vars)  $p(a = 1; \theta_a) = \theta_a$ 



Factorisation:

p(c, a, s) = p(c|a, s)p(a)p(s)

 $p(s = 1; \theta_s) = \theta_s$   $p(c = 1 | a, s; \theta_c) = a s$   $\theta_c^1 = 0 0$   $\theta_c^2 = 1 0$   $\theta_c^3 = 0 1$   $\theta_c^4 = 1 1$ 

All parameters are  $\geq 0$ 

Factorisation + parametric models for the factors gives the parametric statistical model

 $p(c, a, s; \theta) = p(c|a, s; \theta_c)p(a; \theta_a)p(s; \theta_s) \qquad \theta = (\theta_a, \theta_s, \theta_c)$ 

▶ The model specification  $p(a = 1; \theta_a) = \theta_a$  is equivalent to

$$p(a; heta_a) = ( heta_a)^a (1 - heta_a)^{1-a} = heta_a^{\mathbb{I}(a=1)} (1 - heta_a)^{\mathbb{I}(a=0)}$$

Note:  $(\theta_a)^a$  means parameter  $\theta_a$  to the power of a.

*a* is a Bernoulli random variable with "success" probability θ<sub>a</sub>.
 Equivalently for *s*.

- ► Table parametrisation  $p(c|a, s; \theta_c)$ , with  $\theta_c = (\theta_c^1, \dots, \theta_c^4)$ , can be written more compactly in similar form.
- Enumerate the states of the parents of c so that

$$pa_{c} = 1 \Leftrightarrow (a = 0, s = 0) \quad \dots \quad pa_{c} = 4 \Leftrightarrow (a = 1, s = 1)$$

We then have

$$p(c|a, s; \theta_c) = \prod_{j=1}^{4} \left[ (\theta_c^j)^c (1 - \theta_c^j)^{1-c} \right]^{1(\operatorname{pa}_c = j)}$$
$$= \prod_{j=1}^{4} (\theta_c^j)^{1(c=1, \operatorname{pa}_c = j)} (1 - \theta_c^j)^{1(c=0, \operatorname{pa}_c = j)}$$

Product over the possible states of the parents and the possible states of *c*.

Equivalent to the table but more convenient to manipulate.

- Working with the table representation does not shrink the set of probabilistic models.
- Set of p(c, a, s) defined by the DAG = parametric family  $\{p(c, a, s; \theta)\}_{\theta}$ , where  $\theta$  are the parameters in the table.
- Other parametric models are possible too:
  - As before but some parameters are tied, e.g.  $\theta_c^2 = \theta_c^3$
  - ►  $p(c = 1|a, s) = \sigma(w_0 + w_1a + w_2s)$  where  $\sigma()$  is the sigmoid function  $\sigma(u) = 1/(1 + \exp(-u))$ .

In both cases, the parametrisation limits the space of possible probabilistic models.

(see slides *Basic Assumptions for Efficient Model Representation*)

- We can turn the table-based parametric model into a Bayesian model by assigning a (prior) probability distribution to  $\theta$
- Often: we assume independence of the parameters so that the prior pdf/pmf factorises, e.g.

$$p(\theta) = p(\theta_a)p(\theta_s)\prod_{j=1}^4 p(\theta_c^j)$$

▶ With correspondence  $p(\mathbf{x}; \theta) = p(\mathbf{x}|\theta)$ , the Bayesian model is

$$p(\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{x}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$
  
=  $\theta_a^{\mathbb{1}(a=1)}(1-\theta_a)^{\mathbb{1}(a=0)}p(\theta_a)\theta_s^{\mathbb{1}(s=1)}(1-\theta_s)^{\mathbb{1}(s=0)}p(\theta_s)$   
$$\prod_{j=1}^4 (\theta_c^j)^{\mathbb{1}(c=1, \mathrm{pa}_c=j)}(1-\theta_c^j)^{\mathbb{1}(c=0, \mathrm{pa}_c=j)}\prod_{j=1}^4 p(\theta_c^j)$$

Note the factorisation.

PMR – Basics of Model-Based Learning – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

## Program

#### 1. Basic concepts

• Observed data as a sample drawn from an unknown data generating distribution

- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning = parameter estimation or learning = Bayesian inference

### 2. Learning by maximum likelihood estimation

#### 3. Learning by Bayesian inference

### Partition function

- pdfs/pmfs integrate/sum to one.
- Parametrised Gibbs distributions

$$p(\mathbf{x}; \boldsymbol{\theta}) \propto \prod_{i} \phi_{i}(\mathcal{X}_{i}; \boldsymbol{\theta}_{i})$$

do typically not integrate/sum one.

For normalisation, we can divide the unnormalised model  $\tilde{p}(\mathbf{x}; \boldsymbol{\theta}) = \prod_i \phi_i(\mathcal{X}_i; \boldsymbol{\theta}_i)$  by the partition function  $Z(\boldsymbol{\theta})$ ,

$$Z(\theta) = \int \tilde{p}(\mathbf{x}; \theta) \mathrm{d}\mathbf{x}$$
 or  $Z(\theta) = \sum_{\mathbf{x}} \tilde{p}(\mathbf{x}; \theta).$ 

► By construction,

$$p(\mathbf{x}; \boldsymbol{ heta}) = rac{ ilde{p}(\mathbf{x}; \boldsymbol{ heta})}{Z(\boldsymbol{ heta})}$$

sums/integrates to one for all values of  $\theta$ .

## Unnormalised statistical models

▶ If each element of  $\{p(\mathbf{x}; \theta)\}_{\theta}$  integrates/sums to one

$$\int p(\mathbf{x}; \boldsymbol{\theta}) \mathrm{d}\mathbf{x} = 1$$
 or  $\sum_{\mathbf{x}} p(\mathbf{x}; \boldsymbol{\theta}) = 1$ 

for all  $\theta$ , we say that the statistical model is normalised.

- If not, the statistical model is unnormalised.
- Undirected graphical models generally correspond to unnormalised models.
- Unnormalised models can always be normalised by means of the partition function.
- But: partition function  $Z(\theta)$  may be hard to evaluate, which is an issue for likelihood-based learning (see later).

## Reading off the partition function from a normalised model

- Consider  $\tilde{p}(\mathbf{x}; \boldsymbol{\theta}) = \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x}\right)$  where  $\mathbf{x} \in \mathbb{R}^{m}$  and  $\boldsymbol{\Sigma}$  is symmetric.
- > Parameters  $\theta$  are the lower (or upper) triangular part of  $\Sigma$  including the diagonal.
- Corresponds to an unnormalised Gaussian.
- Partition function can be computed in closed form

$$Z(\boldsymbol{\theta}) = |\det 2\pi \boldsymbol{\Sigma}|^{1/2} \qquad p(\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{|\det 2\pi \boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}\mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right)$$

This also means that given a normalised model p(x; θ), you can read off the partition function as the inverse of the part that does not depend on x, i.e. you can split a normalised p(x; θ) into an unnormalised model and the partition function:

$$p(\mathbf{x}; \boldsymbol{\theta}) \longrightarrow p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}$$

## The domain matters

- Consider  $\tilde{p}(\mathbf{x}; \boldsymbol{\theta}) = \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x}\right)$  where  $\mathbf{x} \in \{0, 1\}^{m}$  and  $\mathbf{A}$  is symmetric.
- Parameters θ are the lower (upper) triangular part of A including the diagonal.
- Model is known as Ising model or Boltzmann machine.
- Difference to previous slide:
  - Notation/parametrisation: A vs Σ<sup>-1</sup> (does not matter)
     x ∈ {0,1}<sup>m</sup> vs x ∈ ℝ<sup>m</sup> (does matter!)

Partition function defined via sum rather than integral

$$Z(\boldsymbol{\theta}) = \sum_{\mathbf{x} \in \{0,1\}^m} \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x}\right)$$

There is no analytical closed-form expression for Z(θ). Expensive to compute if m is large. We consider two approaches to learning:

- Learning with statistical models = parameter estimation (or: estimation of the model)
- 2. Learning with Bayesian models = Bayesian inference

## Learning with statistical models = parameter estimation

We use use data to pick one element  $p(\mathbf{x}; \hat{\theta})$  from the set of probabilistic models  $\{p(\mathbf{x}; \theta)\}_{\theta}$ .

$$\{p(\mathbf{x}; oldsymbol{ heta})\}_{oldsymbol{ heta}} egin{array}{cc} \mathsf{data} \ \mathcal{D} \ \longrightarrow \ p(\mathbf{x}; oldsymbol{\hat{ heta}}) \end{array}$$

- In other words, we use data to select the estimate  $\hat{\theta}$  from the possible values of the parameters  $\theta$ .
- Using data to pick a value of θ corresponds to a mapping (function) from data to parameters. The mapping is called an estimator.
- Overloading of notation for the estimate and estimator:
  - $\triangleright$   $\hat{\theta}$  as selected parameter value is the estimate of  $\theta$ .
  - $\hat{\theta}$  as mapping  $\hat{\theta}(\mathcal{D})$  is the estimator of  $\theta$ .

This overloading of notation is often done. For example, when writing  $y = x^2 + 1$ , y can be considered to be the output of the function ( $\equiv$  estimate) or the function y(x) itself ( $\equiv$  estimator).

## Learning with Bayesian models = Bayesian inference

We use data to determine the plausibility (posterior pdf/pmf) of all possible values of the parameters θ.

 $p(\mathbf{x}|\boldsymbol{ heta})p(\boldsymbol{ heta}) \stackrel{\mathsf{data}\ \mathcal{D}}{\longrightarrow} p(\boldsymbol{ heta}|\mathcal{D})$ 

- Instead of picking one value from the set of possible values of  $\theta$ , we here assess all of them.
- Reduces learning to inference.
- "Inverts" the data generating process

DAGs:



## Predictive distribution

- Given data  $\mathcal{D}$ , we would like to predict the next value **x**.
- ► If we take the parameter estimation approach, the predictive distribution is  $p(\mathbf{x}; \hat{\boldsymbol{\theta}})$ .
- In the Bayesian inference approach, we compute

Average of predictions  $p(\mathbf{x}|\boldsymbol{\theta})$ , weighted by  $p(\boldsymbol{\theta}|\mathcal{D})$ .

## Some methods for parameter estimation

- There is a multitude of methods to estimate the parameters.
- Many correspond to solving an optimisation problem, e.g. θ
   = argmax<sub>θ</sub> J(θ, D) for some objective function J. Called M-estimation in the statistics literature.
- Maximum likelihood estimation (MLE) is popular (see next).
- Moment matching: identify the parameter configuration where the moments under the model are equal to the moments computed from the data (empirical moments).
- Naximum-a-posteriori estimation means estimating  $\theta$  by computing the maximiser of the posterior  $\hat{\theta} = \operatorname{argmax}_{\theta} p(\theta | D)$ .
- Score matching is a method suitable for unnormalised models (Gibbs distributions), see later.

## Program

#### 1. Basic concepts

• Observed data as a sample drawn from an unknown data generating distribution

- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning = parameter estimation or learning = Bayesian inference

### 2. Learning by maximum likelihood estimation

#### 3. Learning by Bayesian inference

### 1. Basic concepts

### 2. Learning by maximum likelihood estimation

- The likelihood function and the maximum likelihood estimate
- MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
- Maximum likelihood estimation is a form of moment matching
- The likelihood function is informative and more than just an objective function to optimise

#### 3. Learning by Bayesian inference

# The likelihood function $L(\theta)$

- Measures agreement between  $\theta$  and the observed data  $\mathcal{D}$
- Probability that sampling from the model with parameter value  $\theta$  generates data like  $\mathcal{D}$ .
- Exact match for discrete random variables



# The likelihood function $L(\theta)$

- $\blacktriangleright$  Measures agreement between heta and the observed data  $\mathcal D$
- Probability that sampling from the model with parameter value  $\theta$  generates data like  $\mathcal{D}$ .
- Small neighbourhood for continuous random variables



## The likelihood function $L(\theta)$

Probability that the model generates data like  $\mathcal{D}$  for parameter value  $\theta$ ,

$$L( heta) = p(\mathcal{D}; oldsymbol{ heta})$$

where  $p(\mathcal{D}; \theta)$  is the parametrised model pdf/pmf.

The likelihood function indicates the likelihood of the parameter values, and not of the data.

$$L(\boldsymbol{\theta}) = p(\mathcal{D}; \boldsymbol{\theta}) = p(\mathbf{x}_1, \dots, \mathbf{x}_n; \boldsymbol{\theta}) = \prod_{i=1}^n p(\mathbf{x}_i; \boldsymbol{\theta})$$

► Log-likelihood function  $\ell(\theta) = \log L(\theta)$ . For iid data:

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p(\mathbf{x}_i; \boldsymbol{\theta})$$

#### ► The maximum likelihood estimate (MLE) is

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmax}_{\boldsymbol{ heta}} \ell(\boldsymbol{ heta}) = \operatorname*{argmax}_{\boldsymbol{ heta}} L(\boldsymbol{ heta})$$

- Numerical methods are usually needed for the optimisation.
- We typically only find local optima (sub-optimal but often useful)
- In simple cases, closed form solution possible.

## Gaussian example

Model

$$p(x; \theta) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight) \qquad \theta = (\mu, \sigma^2) \qquad x \in \mathbb{R}$$

▶ Data  $\mathcal{D}$ : *n* iid observations  $x_1, \ldots, x_n$ 

Log-likelihood function

$$\ell(oldsymbol{ heta}) = \sum_{i=1}^n \log p(x_i;oldsymbol{ heta}) 
onumber \ = -rac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - rac{n}{2} \log(2\pi\sigma^2)$$

Maximum likelihood estimates (see exercises)

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
  $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$ 

Model

$$p(x; heta)= heta^{x}(1- heta)^{1-x}= heta^{\mathbbm{l}(x=1)}(1- heta)^{\mathbbm{l}(x=0)}$$

with  $\theta \in [0, 1], x \in \{0, 1\}$ 

• Equivalent to  $p(x = 1; \theta) = \theta$ , or the table

| $p(x; \theta)$ | X |  |  |
|----------------|---|--|--|
| 1-	heta        | 0 |  |  |
| heta           | 1 |  |  |



Log-likelihood function

$$\ell( heta) = \sum_{i=1}^{n} \log p(x_i; heta) 
onumber \ = \sum_{i=1}^{n} x_i \log( heta) + (1 - x_i) \log(1 - heta)$$

Log-likelihood function:

$$\ell( heta) = \sum_{i=1}^{n} x_i \log( heta) + (1 - x_i) \log(1 - heta)$$
  
=  $n_{x=1} \log( heta) + n_{x=0} \log(1 - heta)$ 

where  $n_{x=1}$  is the number of times  $x_i = 1$ , i.e.

$$n_{x=1} = \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} \mathbb{1}(x_i = 1)$$

and  $n_{x=0} = n - n_{x=1}$  is the number of times  $x_i = 0$ , i.e.

$$n_{x=0} = \sum_{i=1}^{n} (1 - x_i) = \sum_{i=1}^{n} \mathbb{1}(x_i = 0)$$

Optimisation problem:

$$\hat{\theta} = \operatorname*{argmax}_{\theta \in [0,1]} n_{x=1} \log(\theta) + n_{x=0} \log(1-\theta)$$

constraint optimisation problem

Reformulation as unconstrained optimisation problem: Write

$$\eta = g(\theta) = \log\left[\frac{\theta}{1-\theta}\right] \qquad \theta = g^{-1}(\eta) = \frac{\exp(\eta)}{1+\exp(\eta)}$$

Note:  $\eta \in \mathbb{R}$ 

With  $\log(\theta) = \eta - \log(1 + \exp(\eta))$ ,  $\log(1 - \theta) = -\log(1 + \exp(\eta))$ and  $n_{x=1} + n_{x=0} = n$ , we have

$$\hat{\eta} = \underset{\eta}{\operatorname{argmax}} n_{x=1}\eta - n\log(1 + \exp(\eta))$$

▶ Because  $g(\theta)$  is an invertible function,  $\hat{\theta} = g^{-1}(\hat{\eta})$ .

PMR – Basics of Model-Based Learning – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

Taking the derivative with respect to  $\eta$  gives necessary condition:

$$n_{x=1} - n \frac{\exp(\eta)}{1 + \exp(\eta)} = 0 \qquad \frac{n_{x=1}}{n} = \frac{\exp(\eta)}{1 + \exp(\eta)}$$

Second derivative is negative for all  $\eta$  so that the maximiser  $\hat{\eta}$  satisfies

$$\frac{n_{x=1}}{n} = \frac{\exp(\hat{\eta})}{1 + \exp(\hat{\eta})}$$

Hence:

$$\hat{\theta} = g^{-1}(\hat{\eta}) = \frac{\exp(\hat{\eta})}{1 + \exp(\hat{\eta})} = \frac{n_{x=1}}{n}$$

- Corresponds to counting: n<sub>x=1</sub>/n is the fraction of ones in the observed data x<sub>1</sub>,...x<sub>n</sub>.
- Note: same result could here have been obtained by deriving ℓ(θ) with respect to θ.

## Invariance of the MLE to re-parametrisation

- We re-parametrised the likelihood function using  $\eta = \log(\theta/(1-\theta)).$
- This generalises: for  $\eta = g(\theta)$ , where g is invertible, we can optimise  $J(\eta)$

$$J(\boldsymbol{\eta}) = \ell\left(g^{-1}(\boldsymbol{\eta})
ight)$$

instead of  $\ell(\theta)$ .

This is because

$$\max_{\eta} J(\eta) = \max_{\theta} \ell(\theta)$$
$$\operatorname{argmax}_{\theta} \ell(\theta) = g^{-1} \left( \operatorname{argmax}_{\eta} J(\eta) \right)$$

Sometimes simplifies the optimisation.

| Statistical model                                                    |                   |               |                  | S |
|----------------------------------------------------------------------|-------------------|---------------|------------------|---|
| $p(c, a, s; \theta) = p(c a, s; \theta_c^1, \dots, \theta_c^4)$      | p(a;              | $	heta_a)\mu$ | $o(s; \theta_s)$ |   |
| with $p(a = 1; \theta_a) = \theta_a$ $p(s = 1; \theta_s) = \theta_s$ | ) <sub>s</sub> ar | nd            |                  |   |
| $p(c=1 a,s;	heta_c^1,\ldots,	heta_c^4))$                             | а                 | S             |                  |   |
| $\theta_c^1$                                                         | 0                 | 0             |                  |   |
| $\theta_c^2$                                                         | 1                 | 0             |                  |   |
| $\theta_c^3$                                                         | 0                 | 1             |                  |   |
| $\theta_c^4$                                                         | 1                 | 1             |                  |   |

- ▶ Data  $\mathcal{D}$ :: *n* iid observations  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ , where  $\mathbf{x}_i = (a_i, s_i, c_i)$
- MLE of the parameters is again given by the fraction of occurrences. (see exercises)

## Maximum likelihood as moment matching

- Likelihood of  $\theta$ : Probability that sampling from the model with parameter value  $\theta$  generates data like observed data  $\mathcal{D}$ .
- MLE: parameter configuration for which the probability to generate similar data is highest.
- Alternative interpretation: parameter configuration for which some specific moments under the model are equal to the empirical moments.

With

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}$$

we show on the next slides that the MLE  $\hat{ heta}$  satisfies:

$$\int \mathbf{m}(\mathbf{x}; \hat{\theta}) p(\mathbf{x}; \hat{\theta}) d\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \hat{\theta})$$
expected moment wrt  $p(\mathbf{x}; \hat{\theta})$ 
empirical moment

with "moments"  $\mathbf{m}(\mathbf{x}; \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x}; \boldsymbol{\theta})$ 

PMR – Basics of Model-Based Learning – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 © ()

## Maximum likelihood as moment matching

• Gaussian example:  $\log \tilde{p}(x; \mu, \sigma^2) = -\frac{(x-\mu)^2}{2\sigma^2}$ 

Derivatives

$$\frac{\partial}{\partial \mu} \log \tilde{p}(x; \mu, \sigma^2) = \frac{x - \mu}{\sigma^2} \quad \frac{\partial}{\partial \sigma} \log \tilde{p}(x; \mu, \sigma^2) = \frac{(x - \mu)^2}{\sigma^3}$$

Moment matching equations:

$$\underbrace{\mathbb{E}_{p(x;\hat{\mu},\hat{\sigma})}\left[\frac{x-\hat{\mu}}{\hat{\sigma}^{2}}\right]}_{0} \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}-\hat{\mu}}{\hat{\sigma}^{2}} \quad \Rightarrow \quad \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$
$$\underbrace{\mathbb{E}_{p(x;\hat{\mu},\hat{\sigma})}\left[\frac{(x-\hat{\mu})^{2}}{\hat{\sigma}^{3}}\right]}_{1/\hat{\sigma}} \stackrel{!}{=} \frac{1}{n} \sum_{i=1}^{n} \frac{(x_{i}-\hat{\mu})^{2}}{\hat{\sigma}^{3}} \quad \Rightarrow \quad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i}-\hat{\mu})^{2}$$

Recovers the maximum likelihood estimates.

### Maximum likelihood as moment matching (proof, not examinable)

A necessary condition for the MLE  $\hat{\theta}$  to satisfy is

 $\nabla_{\boldsymbol{ heta}}\ell(\boldsymbol{ heta})\big|_{\hat{\boldsymbol{ heta}}}=0$ 

We can write the gradient of the log-likelihood function as follows

$$\begin{aligned} \nabla_{\theta} \ell(\theta) &= \nabla_{\theta} \sum_{i=1}^{n} \log p(\mathbf{x}_{i}; \theta) \\ &= \nabla_{\theta} \sum_{i=1}^{n} \log \frac{\tilde{p}(\mathbf{x}_{i}; \theta)}{Z(\theta)} \\ &= \nabla_{\theta} \sum_{i=1}^{n} \log \tilde{p}(\mathbf{x}_{i}; \theta) - \nabla_{\theta} n \log Z(\theta) \\ &= \sum_{i=1}^{n} \nabla_{\theta} \log \tilde{p}(\mathbf{x}_{i}; \theta) - n \nabla_{\theta} \log Z(\theta) \\ &= \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \theta) - n \nabla_{\theta} \log Z(\theta) \end{aligned}$$

### Maximum likelihood as moment matching (proof, not examinable)

The gradient  $\nabla_{\theta} \log Z(\theta)$  is

$$egin{aligned} 
abla_{ heta} \log Z(m{ heta}) &= rac{1}{Z(m{ heta})} 
abla_{ heta} Z(m{ heta}) \ &= rac{1}{Z(m{ heta})} 
abla_{m{ heta}} \int ilde{p}(\mathbf{x};m{ heta}) \mathrm{d}\mathbf{x} \ &= rac{\int 
abla_{m{ heta}} ilde{p}(\mathbf{x};m{ heta}) \mathrm{d}\mathbf{x}}{Z(m{ heta})} \end{aligned}$$

Since  $(\log f(x))' = \frac{f'(x)}{f(x)}$  we also have  $f'(x) = (\log f(x))'f(x)$  so that

$$\nabla_{\theta} \log Z(\theta) = \frac{\int \nabla_{\theta} \left[\log \tilde{p}(\mathbf{x}; \theta)\right] \tilde{p}(\mathbf{x}; \theta) d\mathbf{x}}{Z(\theta)}$$
$$= \int \nabla_{\theta} \left[\log \tilde{p}(\mathbf{x}; \theta)\right] p(\mathbf{x}; \theta) d\mathbf{x}$$
$$= \int \mathbf{m}(\mathbf{x}; \theta) p(\mathbf{x}; \theta) d\mathbf{x}$$

### Maximum likelihood as moment matching (proof, not examinable)

The gradient of the log-likelihood function  $\ell(\theta)$  thus is

$$\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \boldsymbol{\theta}) - n \int \mathbf{m}(\mathbf{x}; \boldsymbol{\theta}) p(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x}$$

The necessary condition that the gradient is zero at the MLE  $\hat{\theta}$  yields the desired result:

$$\int \mathbf{m}(\mathbf{x}; \hat{\boldsymbol{\theta}}) p(\mathbf{x}; \hat{\boldsymbol{\theta}}) \mathrm{d}\mathbf{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \hat{\boldsymbol{\theta}})$$

Since the integral is the expectation of  $\mathbf{m}(\mathbf{x}; \hat{\theta})$  with respect to  $p(\mathbf{x}; \hat{\theta})$  we can write the above equation as

$$\mathbb{E}_{p(\mathbf{x};\hat{\boldsymbol{\theta}})}\left[\mathbf{m}(\mathbf{x};\hat{\boldsymbol{\theta}})\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbf{m}(\mathbf{x}_{i};\hat{\boldsymbol{\theta}})$$

## What we miss with maximum likelihood estimation

- The likelihood function indicates to which extent various parameter values are congruent with the observed data.
- Establishes an ordering of relative preferences for different parameter values, i.e.  $\theta_1$  is preferred over  $\theta_2$  if  $L(\theta_1) > L(\theta_2)$ .
- Max. lik. estimation ignores information contained in the data.
- Example: Likelihood for Bernoulli model with D = (0,0,0,0,0,0,0,1,1,1,...) generated with parameter value 1/3 (green line)



## What we miss with maximum likelihood estimation

- A compromise between considering the whole (log) likelihood function and only its maximum is the computation of the curvature (Hessian) at the maximum.
- strong curvature: max lik estimate clearly to be preferred
- shallow curvature: several other parameter values are nearly equally in line with the data.

### 1. Basic concepts

### 2. Learning by maximum likelihood estimation

- The likelihood function and the maximum likelihood estimate
- MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
- Maximum likelihood estimation is a form of moment matching
- The likelihood function is informative and more than just an objective function to optimise

#### 3. Learning by Bayesian inference

#### 1. Basic concepts

### 2. Learning by maximum likelihood estimation

### 3. Learning by Bayesian inference

- Bayesian approach reduces learning to probabilistic inference
- Different views of the posterior distribution
- Conjugate priors
- Posterior for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables

## Reduces learning to probabilistic inference

We use data to determine the plausibility (posterior pdf/pmf) of all possible values of the parameters θ.

$$p(\mathbf{x}|\boldsymbol{ heta})p(\boldsymbol{ heta}) \stackrel{\mathsf{data}\ \mathcal{D}}{\longrightarrow} p(\boldsymbol{ heta}|\mathcal{D})$$

- Same framework for learning and inference.
- In some cases, closed-form solutions can be obtained (e.g. for conjugate priors).
- In some cases, exact inference methods that we discussed earlier can be used.
- If closed form solutions are not possible and exact inference is computationally too costly, we have to resort to approximate inference via e.g. sampling or variational methods (see later).

## The posterior combines likelihood function and prior

Bayesian inference takes the whole likelihood function into account

$$egin{aligned} p(m{ heta}|\mathcal{D}) &= rac{p(m{ heta},\mathcal{D})}{p(\mathcal{D})} \ &= rac{p(\mathcal{D}|m{ heta})p(m{ heta})}{p(\mathcal{D})} \ &\propto p(\mathcal{D}|m{ heta})p(m{ heta}) \ &\propto L(m{ heta})p(m{ heta}) \end{aligned}$$

L(θ) defines a change of measure from p(θ) to p(θ|D).
 For iid data D = (x<sub>1</sub>,...x<sub>n</sub>)

$$p(oldsymbol{ heta} | \mathcal{D}) \propto \left[ \prod_{i=1}^n p(\mathbf{x}_i | oldsymbol{ heta}) 
ight] p(oldsymbol{ heta})$$

- For large *n*, likelihood dominates:  $\operatorname{argmax}_{\theta} p(\theta | D) \approx \mathsf{MLE}$ (assuming the prior is non-zero at the MLE)
- PMR Basics of Model-Based Learning ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 © ()

### The posterior distribution is a conditional

 $p(\theta|\mathcal{D}) = rac{p(\theta,\mathcal{D})}{p(\mathcal{D})}$ 

For simplicity, consider discrete-valued data so that

$$p(oldsymbol{ heta} | \mathcal{D}) = p(oldsymbol{ heta} | \mathbf{x} = \mathcal{D}) = rac{p(oldsymbol{ heta}, \mathbf{x} = \mathcal{D})}{p(\mathcal{D})}$$

Assume we can sample tuples  $(\theta^{(i)}, \mathbf{x}^{(i)})$  from the joint  $p(\theta, \mathbf{x})$ 

$$oldsymbol{ heta}^{(i)} \sim p(oldsymbol{ heta}) \qquad \mathbf{x}^{(i)} \sim p(\mathbf{x}|oldsymbol{ heta}^{(i)})$$

- Conditioning on  $\mathbf{x} = \mathcal{D}$  then corresponds to only retaining those samples  $(\boldsymbol{\theta}^{(i)}, \mathbf{x}^{(i)})$  where  $\mathbf{x}^{(i)} = \mathcal{D}$ .
- Samples from the posterior = samples from the prior that produce data equal to the observed one.
- Remark: This view of Bayesian inference forms the basis of a class of approximate methods known as approximate Bayesian computation.

## Conjugate priors

Assume the prior is part of a parametric family with hyperparameters α, i.e. the prior is an element of {p(θ; α)}<sub>α</sub>, so that

$$p(oldsymbol{ heta})=p(oldsymbol{ heta};oldsymbol{lpha}_0)$$

for some fixed  $\alpha_0$ .

- ▶ If the posterior  $p(\theta|D)$  is part of the same family as the prior,
  - the prior and posterior are called conjugate distributions
  - the prior is said to be a conjugate prior for p(x|θ) or for the likelihood function.

Learning then corresponds to updating the hyperparameters.

$$egin{array}{ccc} lpha_0 & \stackrel{\mathsf{data}\ \mathcal{D}}{\longrightarrow} & lpha(\mathcal{D}) \end{array}$$

Nodels  $p(\mathbf{x}|\theta)$  that a part of the exponential family always have a conjugate prior (see Barber 8.5).

### Gaussian example (posterior of the mean for known variance)

(for more general cases, see optional reading)

- Denote pdf of a Gaussian random variable x with mean μ and variance σ<sup>2</sup> by N(x; μ, σ<sup>2</sup>).
- Bayesian model

$$p(x|\theta) = \mathcal{N}(x|\theta, \sigma^2)$$
  $p(\theta; \alpha_0) = \mathcal{N}(\theta; \mu_0, \sigma_0^2)$ 

Hyperparameters  $\boldsymbol{\alpha}_0 = (\mu_0, \sigma_0^2)$ 

- ▶ Data  $\mathcal{D}$ : *n* iid observations  $x_1, \ldots, x_n$
- **>** Posterior for  $\theta$  (see exercises)

$$p(\theta|\mathcal{D}) = \mathcal{N}(\theta; \mu_n, \sigma_n^2)$$
$$\mu_n = \frac{\sigma_0^2}{\sigma_0^2 + \sigma^2/n} \bar{x} + \frac{\sigma^2/n}{\sigma_0^2 + \sigma^2/n} \mu_0 \quad \frac{1}{\sigma_n^2} = \frac{1}{\sigma^2/n} + \frac{1}{\sigma_0^2}$$

where  $\bar{x} = 1/n \sum_{i} x_{i}$  is the sample average (the MLE).

▶ Recall: Beta distribution with parameters  $\alpha, \beta$ 

$$\mathcal{B}(f; \alpha, \beta) \propto f^{\alpha-1}(1-f)^{\beta-1} \qquad f \in [0, 1]$$

see the background document Introduction to Probabilistic Modelling
 Bayesian model

$$p(x|\theta) = \theta^{x}(1-\theta)^{1-x} \qquad p(\theta; \alpha_{0}) = \mathcal{B}(\theta; \alpha_{0}, \beta_{0})$$
  
where  $x \in \{0, 1\}, \ \theta \in [0, 1], \text{ and } \alpha_{0} = (\alpha_{0}, \beta_{0})$   
Data  $\mathcal{D}$ :  $n$  iid observations  $x_{1}, \dots, x_{n}$   
Posterior for  $\theta$  (see exercises)  
$$p(\theta|\mathcal{D}) = \mathcal{B}(\theta; \alpha_{n}, \beta_{n})$$
$$\alpha_{n} = \alpha_{0} + n_{x=1} \qquad \beta_{n} = \beta_{0} + n_{x=0}$$

where  $n_{x=1}$  were the number of ones and  $n_{x=0}$  the number of zeros in the data.

PMR – Basics of Model-Based Learning – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

## Examples of the beta distribution $\mathcal{B}(f; \alpha, \beta)$ (Figures courtesy C. Williams)



- ▶ Bernoulli model with  $\mathcal{D} = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, ...)$ generated with parameter value 1/3 (green line)
- ▶ Posterior in blue,  $\mathcal{B}(2,2)$  prior in black
- Compare with earlier likelihood plots. Note the "pull" towards the prior when n is small.



Bayesian model

$$egin{aligned} &p(c,a,s| heta) = p(c|a,s, heta_c^1,\ldots, heta_c^4) p(a| heta_a) p(s| heta_s) \ &= \prod_{j=1}^4 ( heta_c^j)^{1(c=1, ext{pa}_c=j)} (1- heta_c^j)^{1(c=0, ext{pa}_c=j)} \ & heta_a^{1(a=1)} (1- heta_a)^{1(a=0)} heta_s^{1(s=1)} (1- heta_s)^{1(s=0)} \end{aligned}$$

Assume the prior factorises (independence assumptions):

$$p(\theta_a, \theta_s, \theta_c^1, \dots, \theta_c^4; \alpha_0) = \prod_j \mathcal{B}(\theta_c^j; \alpha_{c,0}^j, \beta_{c,0}^j)$$
$$\mathcal{B}(\theta_a; \alpha_{a,0}, \beta_{a,0}) \mathcal{B}(\theta_s; \alpha_{s,0}, \beta_{s,0})$$

- Data D: n iid observations x<sub>1</sub>,..., x<sub>n</sub>, where x<sub>i</sub> = (a<sub>i</sub>, s<sub>i</sub>, c<sub>i</sub>)
   The parameters are independent under the posterior and
- PMR Basics of Model-Based Learning ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 ©

follow a beta distribution (see exercises)

## Program recap

#### 1. Basic concepts

• Observed data as a sample drawn from an unknown data generating distribution

- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning = parameter estimation or learning = Bayesian inference
- 2. Learning by maximum likelihood estimation
  - The likelihood function and the maximum likelihood estimate
  - MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
  - Maximum likelihood estimation is a form of moment matching
  - The likelihood function is informative and more than just an objective function to optimise
- 3. Learning by Bayesian inference
  - Bayesian approach reduces learning to probabilistic inference
  - Different views of the posterior distribution
  - Conjugate priors
  - Posterior for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables