
Exact Inference for Hidden Markov Models

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2022

Recap

I Assuming a factorisation / set of statistical independencies
allowed us to efficiently represent the pdf or pmf of random
variables

I Factorisation can be exploited for inference
I by using the distributive law
I by re-using already computed quantities

I Inference for general factor graphs (variable elimination)
I Inference for factor trees
I Sum-product and max-product/max-sum message passing

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 2 / 37

https://creativecommons.org/licenses/by/4.0/

Program

1. Markov models

2. Inference by message passing

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 3 / 37

https://creativecommons.org/licenses/by/4.0/

Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case

2. Inference by message passing

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 4 / 37

https://creativecommons.org/licenses/by/4.0/

Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.
I speech modelling (speech recognition)
I text modelling (natural language processing)
I gene sequence modelling (bioinformatics)
I spike train modelling (neuroscience)
I object tracking (robotics)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 5 / 37

https://creativecommons.org/licenses/by/4.0/

Markov chains
I Chain rule with ordering x1, . . . , xd

p(x1, . . . , xd) =
d∏

i=1
p(xi |x1, . . . , xi−1)

I If p satisfies ordered Markov property, the number of variables
in the conditioning set can be reduced to a subset
πi ⊆ {x1, . . . , xi−1}

I Not all predecessors but only subset πi is “relevant” for xi .
I L-th order Markov chain: πi = {xi−L, . . . , xi−1}

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−L, . . . , xi−1)

I 1st order Markov chain: πi = {xi−1}

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 6 / 37

https://creativecommons.org/licenses/by/4.0/

Markov chain — DAGs

Chain rule

x1 x2 x3 x4

Second-order Markov chain

x1 x2 x3 x4

First-order Markov chain

x1 x2 x3 x4

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 7 / 37

https://creativecommons.org/licenses/by/4.0/

Vector-valued Markov chains
I While not explicitly discussed, the graphical models extend to

vector-valued variables.
I Chain rule with ordering x1, . . . , xd

p(x1, . . . , xd) =
d∏

i=1
p(xi |x1, . . . , xi−1)

x1 x2 x3 x4

I 1st order Markov chain:

p(x1, . . . , xd) =
d∏

i=1
p(xi |xi−1)

x1 x2 x3 x4

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 8 / 37

https://creativecommons.org/licenses/by/4.0/

Modelling time series

I Index i may refer to time t
I For example, 1st order Markov chain of length T :

p(x1, . . . , xT) =
T∏

t=1
p(xt |xt−1)

I Only the last time point xt−1 is relevant for xt .

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 9 / 37

https://creativecommons.org/licenses/by/4.0/

Transition distribution
(Consider 1st order Markov chain.)
I p(xi |xi−1) is called the transition distribution
I For discrete random variables, p(xi |xi−1) is defined by a

transition matrix Ai

p(xi = k|xi−1 = k ′) = Ai
k,k′ (Ai

k′,k convention is also used)

I For continuous random variables, p(xi |xi−1) is a conditional
pdf, e.g.

p(xi |xi−1) = 1√
2πσ2

i

exp
(
−(xi − fi (xi−1))2

2σ2
i

)

for some function fi
I Homogeneous Markov chain: p(xi |xi−1) does not depend on i ,

e.g.
Ai = A or σi = σ, fi = f

I Inhomogeneous Markov chain: p(xi |xi−1) does depend on i
PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 10 / 37

https://creativecommons.org/licenses/by/4.0/

Hidden Markov model
DAG:

v1 v2 v3 v4

h1 h2 h3 h4

I 1st order Markov chain on hidden (latent) variables hi .
I Each visible (observed) variable vi only depends on the

corresponding hidden variable hi
I Factorisation

p(h1:d , v1:d) = p(v1|h1)p(h1)
d∏

i=2
p(vi |hi)p(hi |hi−1)

I The visibles are d-connected if hiddens are not observed
I Visibles are d-separated (independent) given the hiddens
I The hi model/explain all dependencies between the vi

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 11 / 37

https://creativecommons.org/licenses/by/4.0/

Emission distribution

I p(vi |hi) is called the emission distribution
I Discrete-valued vi and hi :

p(vi |hi) can be represented as a matrix
I Discrete-valued vi and continuous-valued hi :

p(vi |hi) is a conditional pmf.
I Continuous-valued vi : p(vi |hi) is a density
I As for the transition distribution, the emission distribution

p(vi |hi) may depend on i or not.
I If neither the transition nor the emission distribution depend

on i , we have a stationary (or homogeneous) hidden Markov
model.

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 12 / 37

https://creativecommons.org/licenses/by/4.0/

Gaussian emission model with discrete-valued latents

I Special case: hi ⊥⊥ hi−1 , and vi ∈ Rm, hi ∈ {1, . . . ,K}

p(h = k) = pk

p(v|h = k) = 1
| det 2πΣΣΣk |1/2 exp

(
−1
2(v−µµµk)>ΣΣΣ−1

k (v−µµµk)
)

for all hi and vi .
I DAG

h1

v1

h2

v2

. . .

hd

vd

I Corresponds to d iid draws from a Gaussian mixture model
with K mixture components
I Mean E[v|h = k] = µµµk
I Covariance matrix V[v|h = k] = ΣΣΣk

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 13 / 37

https://creativecommons.org/licenses/by/4.0/

Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where
cluster membership at “time” i (the value of hi) generally depends
on cluster membership at “time” i − 1 (the value of hi−1).

k = 1

k = 2

k = 3

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Example for vi ∈ R2, hi ∈ {1, 2, 3}. Left: p(v|h = k). Right: samples

(Bishop, Figure 13.8)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 14 / 37

https://creativecommons.org/licenses/by/4.0/

Program

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case

2. Inference by message passing

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 15 / 37

https://creativecommons.org/licenses/by/4.0/

Program

1. Markov models

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the

α-recursion
Smoothing: Sum-product message passing yields the α-β

recursion

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 16 / 37

https://creativecommons.org/licenses/by/4.0/

The classical inference problems

(Considering the index i to refer to time t)

Filtering (Inferring the present) p(ht |v1:t)
Smoothing (Inferring the past) p(ht |v1:u) t < u
Prediction (Inferring the future) p(ht |v1:u) t > u

p(vt |v1:u) t > u
Most likely (Viterbi algorithm) argmaxh1:t p(h1:t |v1:t)
Hidden path
Posterior (Forward filtering h1:t ∼ p(h1:t |v1:t)
sampling backward sampling)

For the HMM, all tasks can be solved via message passing
(sum-product or max-sum/max-product algorithm).

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 17 / 37

https://creativecommons.org/licenses/by/4.0/

The classical inference problems

������������
������������
������������
������������

������������
������������
������������
������������

��
��������������������
��������������������
��������������������
��������������������

��������������������
��������������������
��������������������
��������������������

��
��������
��������
��������

��������
��������
��������
��������

����
����
����
����

����
����
����
����

t

t

t

filtering

smoothing

prediction

denotes the extent of data
available

(slide courtesy of Chris Williams)
PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 18 / 37

https://creativecommons.org/licenses/by/4.0/

Factor graph for hidden Markov model
DAG:

v1 v2 v3 v4 v5 v6

h1 h2 h3 h4 h5 h6

Factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

p(h1)

h1
p(h2|h1)

h2
p(h3|h2)

h3
p(h4|h3)

h4
p(h5|h4)

h5
p(h6|h5)

h6

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 19 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): factor graph

I When computing p(ht |v1:t), the v1:t = (v1, . . . , vt) are
assumed known and are kept fixed (e.g. t = 4)

I For s = 1, . . . , t, the factors p(vs |hs) depend only on hs .
Combine them with p(hs |hs−1) and form new factors φs

φ1(h1) = p(v1|h1)p(h1), φs(hs−1, hs) = p(vs |hs)p(hs |hs−1)

I Factor graph

v5

p(v5|h5)

v6

p(v6|h6)

φ1
h1

φ2
h2

φ3
h3

φ4
h4

p(h5|h4)
h5

p(h6|h5)
h6

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 20 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): messages
Messages needed to compute p(h4|v1:4): (t = 4)

φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

There is a simplification:
I The message from p(h5|h4) to h4 equals 1!
I Follows from message passing starting at leaves v5 and v6

since the factors p(.|.) are conditionals and sum to one, e.g.∑
v6

p(v6|h6) = 1
∑
h6

p(h6|h5) = 1

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 21 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): reduce to inference on chain

I A message is an effective factor obtained by summing out all
variables downstream from where the message is coming from.

I This means that we can replace the factor sub-graph to the
right of the last observed variable vt and latent ht (here v4
and h4) with the effective factor.

I Effective factor is 1, so that we can just remove the sub-graph.
I Reduces problem to message passing on a chain.

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ → → → → → →

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 22 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): message passing on the chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → → → → → →

I Initialisation: µφ1→h1(h1) = φ1(h1)
I Variable node h1 copies the message:

µh1→φ2(h1) = µφ1→h1(h1)

I Same for other variable nodes. Let us write the algorithm in
terms of µφi→hi (hi) messages only.

I Message from φ2 to h2:

µφ2→h2(h2) =
∑
h1

φ2(h1, h2)µφ1→h1(h1)

I Message from φs to hs , for s = 2, . . . , t:

µφs→hs (hs) =
∑
hs−1

φs(hs−1, hs)µφs−1→hs−1(hs−1)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 23 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): message passing on the chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → → →

I The messages µφs→hs (hs) are traditionally denoted by α(hs).
I Message passing for filtering becomes:

I Init: α(h1) = φ1(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) =
∑
hs−1

φs(hs−1, hs)α(hs−1)

= p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

I Algorithm known as “alpha-recursion”.
I Desired probability:

p(ht |v1:t) = 1
Zt
α(ht) Zt =

∑
ht

α(ht)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 24 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): likelihood

I Joint model for h1:t and v1:t

p(h1:t , v1:t) = p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

I Conditional p(h1:t |v1:t) is proportional to the joint

p(h1:t |v1:t) ∝ p(v1|h1)p(h1)
t∏

i=2
p(vi |hi)p(hi |hi−1)

I Normalising constant Z is the likelihood/marginal p(v1:t)
I From results on message passing: Zt that normalises the

marginal is also the normaliser of p(h1:t |v1:t), i.e. p(v1:t):

Zt =
∑
ht

α(ht) = p(v1:t)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 25 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): interpretation

I We have seen that p(ht |v1:t) ∝ α(ht).
φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → → → → → ← ← ← ←

↑

↑

↑

↑

I Consider p(hs |v1:s) with s < t (e.g. s = 2 and t = 4)

φ1

h1

φ2

h2

p(h3|h2)

h3

p(h4|h3)

h4

p(h5|h4)

h5

p(h6|h5)

h6

v3

p(v3|h3)

v4

p(v4|h4)

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

↑

↑

↑

↑

I Messages to the left of hs are the same as for p(ht |v1:t).
I Messages to the right of hs are all equal to one.

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 26 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): interpretation

I This means that the intermediate α(hs) that we compute
when computing p(ht |v1:t) are unnormalised posteriors
themselves:

α(hs) ∝ p(hs |v1:s)

Note that we condition on v1:s and not v1:t .
I Moreover p(v1:s) =

∑
h(s) α(hs).

I Hence, the alpha-recursion gives us posteriors p(hs |v1:s) and
likelihoods p(v1:s) for s = 1, . . . , t.

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 27 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): interpretation
I Proof by induction shows that α(hs) = p(hs , v1:s).
I Base case holds by definition: α(h1) = p(h1)p(v1|h1).
I Assume it holds for α(hs−1). Then:

α(hs) =
∑
hs−1

p(vs |hs)p(hs |hs−1)α(hs−1)

(induction hyp)=
∑
hs−1

p(vs |hs)p(hs |hs−1)p(hs−1, v1:s−1)

(Markov prop)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs |hs−1, v1:s−1)p(hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs |hs , hs−1, v1:s−1)p(hs , hs−1, v1:s−1)

(product rule)=
∑
hs−1

p(vs , hs , hs−1, v1:s−1)

(marginalise)= p(vs , hs , v1:s−1)

= p(hs , v1:s)
PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 28 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): interpretation

I Update rule as prediction-correction algorithm:

α(hs) (prev slide)= p(hs , v1:s)
(product rule)= p(vs |hs , v1:s−1)p(hs , v1:s−1)
(Markov prop)= p(vs |hs)p(hs , v1:s−1)

∝ p(vs |hs)︸ ︷︷ ︸
correction

p(hs |v1:s−1)︸ ︷︷ ︸
prediction

I The correction term updates the predictive distribution
p(hs |v1:s−1) to include the new data vs .

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 29 / 37

https://creativecommons.org/licenses/by/4.0/

Filtering p(ht |v1:t): summary

I Conditioning reduces the factor graph for the HMM to a
chain.

I Message passing for filtering:
I Init: α(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

which involves prediction of hs given v1:s−1 and correction
using new datum vs .

I α(hs) = p(hs , v1:s) ∝ p(hs |v1:s) and p(v1:s) =
∑

hs α(hs), for
s = 1, . . . , t

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 30 / 37

https://creativecommons.org/licenses/by/4.0/

Smoothing p(ht |v1:u), t < u: reduce to inference on chain

I Unlike in filtering where we predict ht from data up to time t,
in smoothing we have observations from later time points.

I Messages needed to compute p(ht |v1:u) (e.g. t = 2, u = 4)

φ1

h1

φ2

h2

φ3

h3

φ4

h4

p(h5|h4)

h5

p(h6|h5)

h6

v5

p(v5|h5)

v6

p(v6|h6)

→ → → ← ← ← ← ← ← ← ←

↑

↑

↑

↑

I As in filtering, we can simplify to a chain
φ1

h1

φ2

h2

φ3

h3

φ4

h4
→ → → ← ← ← ←

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 31 / 37

https://creativecommons.org/licenses/by/4.0/

Smoothing p(ht |v1:u), t < u: message passing on chain

φ1
h1

φ2
h2

φ3
h3

φ4
h4

→ → → ← ← ← ←

I Messages → from factor leaf φ1 to ht same as in filtering.
I Messages ← from variable leaf hu to ht via message passing.
I Init: µhu→φu (hu) = 1
I Next message µφu→hu−1(hu−1) =

∑
hu φu(hu−1, hu)

I Variable nodes just copy the incoming message. Write the
algorithm in terms of β(hs) = µφs+1→hs (hs) only:

β(hs−1) =
∑
hs

φs(hs−1, hs)β(hs)

=
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

I Gives “alpha-beta recursion” for smoothing.
PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 32 / 37

https://creativecommons.org/licenses/by/4.0/

Smoothing p(ht |v1:u), t < u: message passing on chain
φ1

h1

φ2
h2

φ3
h3

φ4
h4

→ → ← ←

I → Forwards via alpha-recursion
I Init: α(h1) = p(v1|h1)p(h1)
I Update rule for s = 2, . . . t:

α(hs) = p(vs |hs)
∑
hs−1

p(hs |hs−1)α(hs−1)

I ← Backwards via beta-recursion
I Init: β(hu) = 1
I Update rule for s = u, . . . t + 1:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

I Desired probability:

p(ht |v1:u) = 1
Zu

t
α(ht)β(ht) Zu

t =
∑
ht

α(ht)β(ht)

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 33 / 37

https://creativecommons.org/licenses/by/4.0/

Smoothing p(ht |v1:u), t < u: interpretation
I We now show that β(hs) equals the probability of the

upstream observations given hs ,

β(hs) = p(vs+1:u|hs) for all s < u

I First consider β(hu−1):

β(hu−1) =
∑
hu

p(vu|hu)p(hu|hu−1)β(hu)︸ ︷︷ ︸
1

(Markov prop)=
∑
hu

p(vu|hu, hu−1)p(hu|hu−1)

(product rule)=
∑
hu

p(vu, hu|hu−1)

(marginalise)= p(vu|hu−1)

I Hence β(hs) = p(vs+1:u|hs) holds for s = u − 1. Provides the
base case for a proof by induction.

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 34 / 37

https://creativecommons.org/licenses/by/4.0/

Smoothing p(ht |v1:u), t < u: interpretation
Assume β(hs) = p(vs+1:u|hs) holds. Then:

β(hs−1) =
∑
hs

p(vs |hs)p(hs |hs−1)β(hs)

(induction hyp)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs)

(Markov prop)=
∑
hs

p(vs |hs)p(hs |hs−1)p(vs+1:u|hs , vs)

(product rule)=
∑
hs

p(vs:u|hs)p(hs |hs−1)

(Markov prop)=
∑
hs

p(vs:u|hs , hs−1)p(hs |hs−1)

(product rule)=
∑
hs

p(vs:u, hs |hs−1)

(marginalise)= p(vs:u|hs−1)

By induction, β(hs) = p(vs+1:u|hs) for all s < u.
PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 35 / 37

https://creativecommons.org/licenses/by/4.0/

Doing more with the α(hs), β(hs)

I Due to link to message passing: Knowing all α(hs), β(hs) =⇒
knowing all marginals and all joints of neighbouring latents
given the observed data, which will be needed when
estimating the parameters of HMMs (see later).

I We can use the α(hs) for predictions (see exercises).
I We can use the α(hs) for sampling posterior trajectories, i.e.

to sample from p(h1, . . . ht |v1, . . . , vt) (see exercises).
I Algorithms extend to the case of continuous random variables:

replace sums with integrals.

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 36 / 37

https://creativecommons.org/licenses/by/4.0/

Program recap

1. Markov models
Markov chains
Transition distribution
Hidden Markov models
Emission distribution
Mixture of Gaussians as special case

2. Inference by message passing
Inference: filtering, prediction, smoothing, Viterbi
Filtering: Sum-product message passing yields the α-recursion
Smoothing: Sum-product message passing yields the α-β recursion

PMR – HMM Exact Inference – ©Michael U. Gutmann, UoE, 2018-2022 CC BY 4.0 cb 37 / 37

https://creativecommons.org/licenses/by/4.0/

	Markov models
	Markov chains
	Transition distribution
	Hidden Markov models
	Emission distribution
	Mixture of Gaussians as special case

	Inference by message passing
	Inference: filtering, prediction, smoothing, Viterbi
	Filtering: Sum-product message passing yields the -recursion
	Smoothing: Sum-product message passing yields the - recursion

