Exact Inference

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2022

Recap

$$
p\left(\mathbf{x} \mid \mathbf{y}_{o}\right)=\frac{\sum_{\mathbf{z}} p\left(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z}\right)}{\sum_{\mathrm{x}, \mathrm{z}} p\left(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z}\right)}
$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are $d=500$ dimensional, and that each element of the vectors can take $K=10$ values.

- Issue 1: To specify $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$, we need to specify $K^{3 d}-1=10^{1500}-1$ non-negative numbers, which is impossible.
Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?
- Directed and undirected graphical models, factor graphs
- Factorisation and independencies

Recap

$$
p\left(x \mid y_{o}\right)=\frac{\sum_{\mathbf{z}} p\left(x, y_{o}, z\right)}{\sum_{x, 2}^{p\left(x, y_{o}, z\right)}}
$$

- Issue 2: The sum in the numerator goes over the order of $K^{d}=10^{500}$ non-negative numbers and the sum in the denominator over the order of $K^{2 d}=10^{1000}$, which is impossible to compute.
Topic 2: Exact inference Can we further exploit the assumptions on $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to efficiently compute the posterior probability or derived quantities?
- Note: we do not want to introduce new assumptions but exploit those that we made to deal with issue 1 .
- Quantities of interest:
- $p\left(\mathbf{x} \mid \mathbf{y}_{0}\right) \quad$ (marginal inference)
$-\operatorname{argmax}_{\mathrm{x}} p\left(\mathbf{x} \mid \mathbf{y}_{0}\right) \quad$ (inference of most probable states)
- $\mathbb{E}\left[g(\mathbf{x}) \mid \mathbf{y}_{o}\right]$ for some function g (posterior expectations)

Assumptions

Unless otherwise mentioned, we here assume discrete valued random variables whose joint pmf factorises as

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)
$$

with $\mathcal{X}_{i} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$ and $x_{i} \in\{1, \ldots, K\}$.

Note:

- Includes case where (some of) the ϕ_{i} are conditionals
- The x_{i} could be categorical taking on maximally K different values.

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states for factor trees

Program

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states for factor trees

Basic ideas of variable elimination

1. Use the distributive law $a b+a c=a(b+c)$ to exploit the factorisation ($\sum \Pi \rightarrow \Pi \sum$): reduces the overall dimensionality of the domain of the factors in the sum and thereby the computational cost.
2. Recycle/cache results

Example: full factorisation

- Consider discrete-valued random variables $x_{1}, x_{2}, x_{3} \in\{1, \ldots, K\}$
- Assume pmf factorises $p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right)$
- Task: compute $p\left(x_{1}=k\right)$ for $k \in\{1, \ldots, K\}$
- We can use the sum-rule

$$
p\left(x_{1}=k\right)=\sum_{x_{2}, x_{3}} p\left(x_{1}=k, x_{2}, x_{3}\right)
$$

Sum over K^{2} terms for each k (value of $\left.x_{1}\right)$.

- Pre-computing $p\left(x_{1}, x_{2}, x_{3}\right)$ for all K^{3} configurations and then computing the sum is neither necessary nor a good idea
- Exploit factorisation when computing $p\left(x_{1}=k\right)$.

Example: full factorisation

$$
\begin{array}{ll}
\text { (sum rule) } \quad p\left(x_{1}=k\right) & =\sum_{x_{2}, x_{3}} p\left(x_{1}=k, x_{2}, x_{3}\right) \\
\text { (factorisation) } & \propto \sum_{x_{2}} \sum_{x_{3}} \phi_{1}(k) \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \\
\text { (distr. law) } & \propto \phi_{1}(k) \sum_{x_{2}} \sum_{x_{3}} \phi_{2}\left(x_{2}\right) \phi_{3}\left(x_{3}\right) \\
\text { (distr. law) } & \propto \phi_{1}(k)\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right]
\end{array}
$$

Distributive law changes $\sum \Pi$ in (2) to $\Pi \sum$ in (4).

Example: full factorisation

$$
\begin{equation*}
p\left(x_{1}=k\right) \propto \phi_{1}(k)\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right] \tag{5}
\end{equation*}
$$

What's the point?

- Because of the factorisation (independencies) we do not need to evaluate and store the values of $p\left(x_{1}, x_{2}, x_{3}\right)$ for all K^{3} configurations of the random variables.
- 2 sums over K numbers vs. 1 sum over K^{2} numbers
- Recycling/caching of already computed quantities: we only need to compute

$$
\left[\sum_{x_{2}} \phi_{2}\left(x_{2}\right)\right]\left[\sum_{x_{3}} \phi_{3}\left(x_{3}\right)\right]
$$

once; the value can be re-used when computing $p\left(x_{1}=k\right)$ for different k.

Example: general factor graph

- Example:

$$
p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)
$$

- Task: Compute $p\left(x_{1}, x_{3}\right)$
- Note the structural changes in the graph during variable elimination

Example: general factor graph (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
First eliminate x_{6}

$$
p\left(x_{1}, \ldots, x_{5}\right)=\sum_{x_{6}} p\left(x_{1}, \ldots, x_{6}\right)
$$

(factorisation) $\propto \sum_{x_{6}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)$
(distr. law) $\propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \sum_{x_{6}} \phi_{D}\left(x_{3}, x_{6}\right)$

$$
\propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \tilde{\phi}_{6}\left(x_{3}\right)
$$

Example: general factor graph (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
Eliminate x_{5}

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & \propto \sum_{x_{5}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \tilde{\phi}_{6}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \sum_{x_{5}} \phi_{C}\left(x_{3}, x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)
\end{aligned}
$$

Example: general factor graph (cont)

Define $\tilde{\phi}_{56}\left(x_{3}\right)=\tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{6}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{56}\left(x_{3}\right)
\end{aligned}
$$

Example: general factor graph (cont)

Eliminate x_{2}

$$
\begin{aligned}
p\left(x_{1}, x_{3}, x_{4}\right) & \propto \sum_{x_{2}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \tilde{\phi}_{56}\left(x_{3}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \underbrace{\sum_{x_{2}} \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right)}_{K^{3} \text { times } K \text { add } / \text { mult } \Rightarrow O\left(K^{4}\right) \text { cost }} \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right)
\end{aligned}
$$

Other justification for the cost: $\phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right)$ equals a compound factor $\phi_{*}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ that requires K^{4} space when represented as a table. Summing out x_{2} for all combinations of $\left(x_{1}, x_{3}, x_{4}\right)$ touches each table-entry once $\Rightarrow O\left(K^{4}\right)$ cost.

Example: general factor graph (cont)

Task: Compute $p\left(x_{1}, x_{3}\right)$
Eliminate x_{4}

$$
\begin{aligned}
p\left(x_{1}, x_{3}\right) & \propto \sum_{x_{4}} \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \sum_{x_{4}} \tilde{\phi}_{2}\left(x_{1}, x_{3}, x_{4}\right) \\
& \propto \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{24}\left(x_{1}, x_{3}\right) \\
x_{1} & \tilde{\phi}_{24}
\end{aligned}
$$

Normalisation to obtain $p\left(x_{1}=k, x_{3}=k^{\prime}\right)$ for any k, k^{\prime} :

$$
p\left(x_{1}=k, x_{3}=k^{\prime}\right)=\frac{\tilde{\phi}_{56}\left(x_{3}=k^{\prime}\right) \tilde{\phi}_{24}\left(x_{1}=k, x_{3}=k^{\prime}\right)}{\sum_{x_{1}, x_{3}} \tilde{\phi}_{56}\left(x_{3}\right) \tilde{\phi}_{24}\left(x_{1}, x_{3}\right)}
$$

Remarks

- Compared to precomputing K^{6} numbers and then marginalising out variables, using the factorisation reduces the cost to $O\left(K^{4}\right)$.
- Caching: Most of the intermediate quantities can be re-used when computing $p\left(x_{1}=k, x_{3}=k^{\prime}\right)$ for different k, k^{\prime}
- Structural changes in the graph during variable elimination:
- Eliminated leaf-variable and factor node \rightarrow factor node
- Factor nodes that depend on the same variables \rightarrow single factor node
- Factor nodes between neighbours of the eliminated variable \rightarrow single factor node connecting all neighbours

Variable (bucket) elimination

Without loss of generality: Given $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)$ compute the marginal $p\left(\mathcal{X}_{\text {target }}\right)$ for some $\mathcal{X}_{\text {target }} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$.

- Assume that at iteration k, you have the pmf over $d^{k}=d-k$ variables $X^{k}=\left(x_{i 1}, \ldots, x_{i_{d} k}\right)$ that factorises as

$$
p\left(X^{k}\right) \propto \prod_{i=1}^{m^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)
$$

- Decide which variable to eliminate. Call it x^{*}. $\left(x^{*} \in X^{k}, x^{*} \notin \mathcal{X}_{\text {target }}\right)$
- Let X^{k+1} be equal to X^{k} with x^{*} removed. We have
(sum rule)

$$
\begin{equation*}
p\left(X^{k+1}\right)=\sum_{x^{*}} p\left(X^{k}\right) \tag{6}
\end{equation*}
$$

(factorisation)

$$
\begin{equation*}
\propto \sum_{x^{*}} \prod_{i=1}^{m^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \tag{7}
\end{equation*}
$$

Variable (bucket) elimination (cont.)

$$
\begin{align*}
p\left(X^{k+1}\right) & \propto \sum_{x^{*}} \prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \prod_{i: x^{*} \in \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \tag{8}\\
\text { (distr. law) } & \propto \prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \sum_{x^{*}} \prod_{i: x^{*} \in \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right) \tag{9}\\
& \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)\right] \underbrace{\sum_{x^{*}} \phi_{*}^{k}\left(\mathcal{X}_{*}^{k}\right)}_{\text {compound factor } \phi_{*}^{k}\left(\mathcal{X}_{*}^{k}\right)} \tag{10}\\
& \underbrace{}_{\text {new factor } \tilde{\phi}_{*}^{k}\left(\tilde{\mathcal{X}}_{*}^{k}\right)}
\end{align*}
$$

\mathcal{X}_{*}^{k} is the union of all \mathcal{X}_{i}^{k} that contain x^{*}, and $\tilde{\mathcal{X}}_{*}^{k}$ is \mathcal{X}_{*}^{k} with x^{*} removed,

$$
\begin{equation*}
\mathcal{X}_{*}^{k}=\bigcup \mathcal{X}_{i}^{k} \quad \tilde{\mathcal{X}}_{*}^{k}=\mathcal{X}_{*}^{k} \backslash x^{*} \tag{11}
\end{equation*}
$$

Variable (bucket) elimination (cont.)

- By re-labelling the factors and variables, we obtain

$$
\begin{align*}
p\left(X^{k+1}\right) & \propto\left[\prod_{i: x^{*} \notin \mathcal{X}_{i}^{k}} \phi_{i}^{k}\left(\mathcal{X}_{i}^{k}\right)\right] \tilde{\phi}_{*}^{k}\left(\tilde{\mathcal{X}}_{*}^{k}\right) \tag{12}\\
& \propto \prod_{i=1}^{m^{k+1}} \phi_{i}^{k+1}\left(\mathcal{X}_{i}^{k+1}\right) \tag{13}
\end{align*}
$$

which has the same form as $p\left(X^{k}\right)$.

- Set $k=k+1$ and decide which variable x^{*} to eliminate next.
- To compute $p\left(\mathcal{X}_{\text {target }}\right)$ stop when $X^{k}=\mathcal{X}_{\text {target }}$, followed by normalisation.

How to choose the elimination variable x^{*} ?

- When we marginalise over x^{*} in iteration k, we generate the temporary compound factor ϕ_{*}^{k} that depends on

$$
\begin{equation*}
\mathcal{X}_{*}^{k}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}^{k}} \mathcal{X}_{i}^{k} \tag{14}
\end{equation*}
$$

Contains x^{*} and the variables with which x^{*} shares a factor node in the factor graph ("neighbours").

- Ex.: $p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)$ If we eliminated $x^{*}=x_{3}: \mathcal{X}_{*}=\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$

How to choose the elimination variable x^{*} ?

- When we marginalise over x^{*} in iteration k, we generate the temporary compound factor ϕ_{*}^{k} that depends on

$$
\begin{equation*}
\mathcal{X}_{*}^{k}=\bigcup_{i: x^{*} \in \mathcal{X}_{i}^{k}} \mathcal{X}_{i}^{k} \tag{15}
\end{equation*}
$$

Contains x^{*} and the variables with which x^{*} shares a factor node in the factor graph ("neighbours").

- Eliminating x^{*} costs $K^{M_{k}}$ where M_{k} is the number of variables in \mathcal{X}_{*}^{k}.
- Optimal choice of elimination order is difficult since the size of the factors can change when we eliminate variables (for details, see e.g. Koller, Section 9.4, not examinable)
- Heuristic: in each iteration, choose x^{*} in a greedy way so that \mathcal{X}_{*}^{k} is small, i.e. the variable with the least number of neighbours in the factor graph (e.g. x_{5} or x_{6} in the example)

Computing conditionals

- The same approach can be used to compute conditionals.
- Example: Given
$p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}\left(x_{2}, x_{3}, x_{4}\right) \phi_{C}\left(x_{3}, x_{5}\right) \phi_{D}\left(x_{3}, x_{6}\right)$
assume you want to compute $p\left(x_{1} \mid x_{3}=\alpha\right)$
- We can write

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6} \mid x_{3}=\alpha\right) & \propto p\left(x_{1}, x_{2}, x_{3}=\alpha, x_{4}, x_{5}, x_{6}\right) \\
& \propto \phi_{A}\left(x_{1}, x_{2}, x_{4}\right) \phi_{B}^{\alpha}\left(x_{2}, x_{4}\right) \phi_{C}^{\alpha}\left(x_{5}\right) \phi_{D}^{\alpha}\left(x_{6}\right)
\end{aligned}
$$

and consider $p\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6} \mid x_{3}=\alpha\right)$ to be a pdf/pmf $\tilde{p}\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right)$ defined up to the proportionality factor.

- We can compute $p\left(x_{1} \mid x_{3}=\alpha\right)=\tilde{p}\left(x_{1}\right)$ by applying variable elimination to $\tilde{p}\left(x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right)$.

What if we have continuous random variables?

- Conceptually, all stays the same but we replace sums with integrals
- Simplifications due to distributive law remain valid
- Caching of results remains valid
- In special cases, integral can be computed in closed form (e.g. Gaussian family)
- If not: need for approximations (see later)
- Approximations are also needed for discrete random variables when K is large.

Program

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states for factor trees

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

3. Inference of most probable states for factor trees

Factor trees

- We next consider the class of models (pmfs/pdfs) for which the factor graph is a tree.
- Tree: graph where there is only one path connecting any two nodes (no loops!)
- Chain is an example of a factor tree. (see later: inference for HMMs)
- Useful property: the factor tree obtained after summing out a leaf variable is still a factor tree.

Variable elimination for factor trees

Task: Compute $p\left(x_{1}\right)$ for
$p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$

Sum out leaf-variable x_{5}
Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{4}\right) & =\sum_{x_{5}} p\left(x_{1}, \ldots, x_{5}\right) \\
& \propto \sum_{x_{5}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \sum_{x_{5}} \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{3}\right)
\end{aligned}
$$

Visualising the computation

Graph with transformed factors:

Graph with "messages":

Message: $\quad \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)=\tilde{\phi}_{5}\left(x_{3}\right)=\sum_{x_{5}} \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$
Effective factor for x_{3} if all variables in the subtree attached to ϕ_{E} are eliminated (subtree does not include x_{3})

Sum out leaf-variable x_{4}

Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{3}\right) & =\sum_{x_{4}} p\left(x_{1}, \ldots, x_{4}\right) \\
& \propto \sum_{x_{4}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \tilde{\phi}_{5}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \sum_{x_{4}} \phi_{D}\left(x_{3}, x_{4}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right) \tilde{\phi}_{4}\left(x_{3}\right)
\end{aligned}
$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message: $\quad \mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right)=\tilde{\phi}_{4}\left(x_{3}\right)=\sum_{x_{4}} \phi_{D}\left(x_{3}, x_{4}\right)$
Effective factor for x_{3} if all variables in the subtree attached to ϕ_{D} are eliminated (subtree does not include x_{3})

Simplify by multiplying factors with common domain

Task: Compute $p\left(x_{1}\right)$

$$
p\left(x_{1}, \ldots, x_{3}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \underbrace{\tilde{\phi}_{5}\left(x_{3}\right) \tilde{\phi}_{4}\left(x_{3}\right)}_{\tilde{\phi}_{54}\left(x_{3}\right)}
$$

$$
\propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right)
$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message: $\mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)=\tilde{\phi}_{54}\left(x_{3}\right)=\tilde{\phi}_{4}\left(x_{3}\right) \tilde{\phi}_{5}\left(x_{3}\right)=\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)$
Effective factor for x_{3} if all variables in the subtrees attached to x_{3} are eliminated (subtrees do not include ϕ_{c})

Sum out leaf-variable x_{3}

Task: Compute $p\left(x_{1}\right)$

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\sum_{x_{3}} p\left(x_{1}, x_{2}, x_{3}\right) \\
& \propto \sum_{x_{3}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \sum_{x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Sum out leaf-variable x_{2} and normalise

$$
\begin{aligned}
p\left(x_{1}\right) & =\sum_{x_{2}} p\left(x_{1}, x_{2}\right) \propto \sum_{x_{2}} \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \sum_{x_{2}} \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)
\end{aligned}
$$

$$
p\left(x_{1}\right)=\frac{\phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)}{\sum_{x_{1}} \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right)}
$$

Alternative: sum out both x_{2} and x_{3}

Since

$$
\begin{aligned}
\tilde{\phi}_{5432}\left(x_{1}\right) & =\sum_{x_{2}} \phi_{B}\left(x_{2}\right) \tilde{\phi}_{543}\left(x_{1}, x_{2}\right) \\
& =\sum_{x_{2}} \phi_{B}\left(x_{2}\right) \sum_{x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \tilde{\phi}_{54}\left(x_{3}\right) \\
& =\sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{54}\left(x_{3}\right)
\end{aligned}
$$

we obtain the same result by first summing out x_{2} and then x_{3}, or both at the same time.

In any case:

$$
p\left(x_{1}\right) \propto \phi_{A}\left(x_{1}\right) \sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \tilde{\phi}_{54}\left(x_{3}\right)
$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message:
$\mu_{\phi C \rightarrow x_{1}}\left(x_{1}\right)=\tilde{\phi}_{5432}\left(x_{1}\right)=\sum_{x_{2}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{B}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)$
Effective factor for x_{1} if all variables in the subtrees attached to ϕ_{C} are eliminated (subtrees do not include x_{1})

Representing leaf-factors with messages

Since there are no variables "behind" the leaf-factors, we can consider all leaf-factors to be effective factors themselves:

$$
\begin{aligned}
& \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)=\phi_{A}\left(x_{1}\right) \\
& \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right)=\phi_{B}\left(x_{2}\right) \\
& \mu_{\phi_{F} \rightarrow x_{5}}\left(x_{5}\right)=\phi_{F}\left(x_{5}\right)
\end{aligned}
$$

We then obtain

Variables with single incoming messages copy the message

We had

$$
\mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)=\mu_{\phi_{D} \rightarrow x_{3}}\left(x_{3}\right) \mu_{\phi_{E} \rightarrow x_{3}}\left(x_{3}\right)
$$

which corresponded to simplifying the factorisation by multiplying effective factors defined on the same domain. Special cases:

$$
\begin{aligned}
& \mu_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)=\mu_{\phi_{F} \rightarrow x_{5}}\left(x_{5}\right) \\
& \mu_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)=\mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right)
\end{aligned}
$$

We then obtain

Messages from leaf variable nodes

What about x_{4} ? We can consider
$p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right) \phi_{E}\left(x_{3}, x_{5}\right) \phi_{F}\left(x_{5}\right)$
to include an additional factor $\phi_{G}\left(x_{4}\right)=1$. We can thus set

$$
\begin{aligned}
& \mu_{\phi_{G} \rightarrow x_{4}}\left(x_{4}\right)=1 \\
& \mu_{x_{4} \rightarrow \phi_{D}}\left(x_{4}\right)=\mu_{\phi_{G} \rightarrow x_{4}}\left(x_{4}\right)=1
\end{aligned}
$$

Graph:

Single marginal from messages

We have seen that

$$
\begin{aligned}
p\left(x_{1}\right) & \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right) \\
& \propto \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)
\end{aligned}
$$

Marginal is proportional to the product of the incoming messages.

Single marginal from messages

Cost (due to properties of variable elimination):

- Linear in number of variables d, exponential in maximal number of variables attached to a factor node.
(cost known upfront since no new factors are created unlike in the general case considered before)
- Recycling: most messages do not depend on x_{1} and can be re-used for computing $p\left(x_{1}\right)$ for any value of x_{1} (as well as for computing the marginal distribution of other variables, see next slides)

Further marginals from messages

- We have seen that

$$
\begin{aligned}
p\left(x_{1}\right) & \propto \phi_{A}\left(x_{1}\right) \tilde{\phi}_{5432}\left(x_{1}\right) \\
& \propto \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{C} \rightarrow x_{1}}\left(x_{1}\right)
\end{aligned}
$$

- Remember: Messages are effective factors

- This correspondence allows us to write down the marginal for other variables too. The incoming messages are all we need.

Further marginals from messages

- Example: For $p\left(x_{2}\right)$ we need $\mu_{\phi_{B} \rightarrow x_{2}}$ and $\mu_{\phi_{C} \rightarrow x_{2}}$
- $\mu_{\phi_{B} \rightarrow x_{2}}$ is known but $\mu_{\phi_{C} \rightarrow x_{2}}$ needs to be computed
- $\mu_{\phi_{C} \rightarrow x_{2}}$ is the effective factor for x_{2} if all variables of the subtrees attached to ϕ_{c} are eliminated.
- Can be computed from previously computed factors:

$$
\mu_{\phi_{A} \rightarrow x_{1}} \quad \text { and } \quad \mu_{x_{3} \rightarrow \phi_{C}}
$$

Further marginals from messages

- By definition of the messages, and their correspondence to effective factors, we have

$$
p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right)
$$

- Eliminating x_{1} and x_{3} gives

$$
\begin{aligned}
& p\left(x_{2}\right) \propto \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \underbrace{\sum_{x_{1}, x_{3}} \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)}_{\mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)} \\
& \propto \mu_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) \mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)
\end{aligned}
$$

Further marginals from messages

We had

$$
\mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} \phi_{c}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right)
$$

Introducing variable to factor message $\mu_{x_{1} \rightarrow \phi_{c}}=\mu_{\phi_{A} \rightarrow x_{1}}=\phi_{A}$

$$
\mu_{\phi_{C} \rightarrow x_{2}}\left(x_{2}\right)=\sum_{x_{1}, x_{3}} \phi_{c}\left(x_{1}, x_{2}, x_{3}\right) \mu_{x_{3} \rightarrow \phi_{C}}\left(x_{3}\right) \mu_{x_{1} \rightarrow \phi_{c}}\left(x_{1}\right)
$$

All (univariate) marginals from messages

- We can use the messages to compute the marginals of all variables in the graph.
- For the marginal of a variable x we need to know the incoming messages $\mu_{\phi_{i} \rightarrow x}$ from all factor nodes ϕ_{i} connected to x.
- This means that if each edge has a message in both directions, we can compute the marginals of all variables in the graph.

Joint distributions from messages

- The correspondence between messages and effective factors allows us to find the joint distribution for variables connected to the same factor node (neighbours).
- For example, we can compute $p\left(x_{3}, x_{5}\right)$ from messages
- The messages $\mu_{x_{3} \rightarrow \phi_{E}}$ and $\mu_{x_{5} \rightarrow \phi_{E}}$ correspond to effective factors attached to x_{3} and x_{5}, respectively.

- Factor graph corresponds to

$$
p\left(x_{3}, x_{5}\right) \propto \phi_{E}\left(x_{3}, x_{5}\right) \mu_{x_{3} \rightarrow \phi_{E}}\left(x_{3}\right) \mu_{x_{5} \rightarrow \phi_{E}}\left(x_{5}\right)
$$

Rules of message passing: initialisation

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

- From a leaf variable node x to a factor node ϕ, the message $\mu_{x \rightarrow \phi}(x)=1$.
- From a leaf factor node ϕ to a variable node x, the message $\mu_{\phi \rightarrow x}(x)=\phi(x)$.

Rules of message passing: factor to variable messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let x_{1}, \ldots, x_{j} be the neighbours of factor node ϕ, without variable x.

$$
\mu_{\phi \rightarrow x}(x)=\sum_{x_{1}, \ldots, x_{j}} \phi\left(x_{1}, \ldots, x_{j}, x\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

Rule corresponds to eliminating variables x_{1}, \ldots, x_{j}

Rules of message passing: variable to factor messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let $\phi_{1}, \ldots, \phi_{j}$ be the neighbours of variable node x, without factor ϕ.

$$
\mu_{x \rightarrow \phi}(x)=\prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x}(x)
$$

Rule corresponds to simplifying the factorisation by multiplying effective factors defined on the same domain.

Rules of message passing: univariate marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let $\phi_{1}, \ldots, \phi_{j}$ be all neighbours of variable node x.

$$
p(x)=\frac{1}{Z} \prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x}(x) \quad Z=\sum_{x} \prod_{i} \mu_{\phi_{i} \rightarrow x}(x)
$$

Note: The normalising constant Z can be computed for any of the marginals. Same as the normaliser for $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)$.

Rules of message passing: joint marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let x_{1}, \ldots, x_{j} be all neighbours of factor node ϕ.

$$
p\left(x_{1}, \ldots, x_{j}\right)=\frac{1}{Z} \phi\left(x_{1}, \ldots, x_{j}\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

A word about numerics

- In practice, it is better to work in the log-domain.
- Log of products of messages \longrightarrow sums of log-messages.
- For factor to variable messages, we need the log-sum-exp trick:

$$
\log \mu_{\phi \rightarrow x}(x)=\log \left(\sum_{x_{1}, \ldots, x_{j}} \phi\left(x_{1}, \ldots, x_{j}, x\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)\right)
$$

With $\lambda_{i}\left(x_{i}\right)=\log \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)$, introduce $\omega\left(x_{1}, \ldots, x_{j}, x\right)$,

$$
\begin{aligned}
\omega\left(x_{1}, \ldots, x_{j}, x\right) & =\log \phi\left(x_{1}, \ldots, x_{j}, x\right)+\log \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right) \\
& =\log \phi\left(x_{1}, \ldots, x_{j}, x\right)+\sum_{i=1}^{j} \lambda_{i}\left(x_{i}\right)
\end{aligned}
$$

Depends on x_{1}, \ldots, x_{j} and x (assumed fixed here). This gives

$$
\log \mu_{\phi \rightarrow x}(x)=\log \left(\sum_{x_{1}, \ldots, x_{j}} \exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)\right)\right)
$$

A word about numerics

- We had

$$
\log \mu_{\phi \rightarrow x}(x)=\log \left(\sum_{x_{1}, \ldots, x_{j}} \exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)\right)\right)
$$

- Sum goes over all possible values of x_{1}, \ldots, x_{j}. If the $\omega\left(x_{1}, \ldots, x_{j}, x\right)$ are very large or small, we have numerical overflow/underflow problems.
- Introduce $\omega^{*}(x)=\max _{x_{1}, \ldots, x_{j}} \omega\left(x_{1}, \ldots, x_{j}, x\right)$ so that

$$
\begin{aligned}
\log \mu_{\phi \rightarrow x}(x) & =\log \sum_{x_{1}, \ldots, x_{j}} \exp \left(\omega^{*}(x)\right) \exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)-\omega^{*}(x)\right) \\
& =\log \left(\exp \left(\omega^{*}(x)\right) \sum_{x_{1}, \ldots, x_{j}} \exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)-\omega^{*}(x)\right)\right) \\
& =\omega^{*}(x)+\log \left(\sum_{x_{1}, \ldots, x_{j}} \exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)-\omega^{*}(x)\right)\right)
\end{aligned}
$$

- Numerically stable because $\exp \left(\omega\left(x_{1}, \ldots, x_{j}, x\right)-\omega(x)^{*}\right) \leq 1$.

Other names for the sum-product algorithm

- Other names for the sum-product algorithm include
- sum-product message passing
- message passing
- belief propagation
- Whatever the name: it is variable elimination applied to factor trees

Key advantages of the sum-product algorithm

Assume $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right)$, with $\mathcal{X}_{i} \subseteq\left\{x_{1}, \ldots, x_{d}\right\}$, can be represented as a factor tree.

- The sum-product algorithm allows us to compute
- all univariate marginals $p\left(x_{i}\right)$.
- all joint distributions $p\left(\mathcal{X}_{i}\right)$ for the variables \mathcal{X}_{i} that are part of the same factor ϕ_{i}.
- Cost: If variables can take maximally K values and there are maximally M elements in the $\mathcal{X}_{i}: O\left(2 d K^{M}\right)=O\left(d K^{M}\right)$

Applicability of the sum-product algorithm

- Factor graph must be a tree
- Can be used to compute conditionals (same argument as for variable elimination)
- May be used for continuous random variables (same caveats as for variable elimination)

If the factor graph is not a tree

- Use variable elimination
- Group variables together so that the factor graph becomes a tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)
- Pretend the factor graph is a tree and use message passing (loopy belief propagation; not examinable)
- Can you condition on some variables so that the conditional is a tree? Message passing can then be used to solve part of the inference problem.
Example: $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is not a tree but $p\left(x_{1}, x_{2}, x_{3} \mid x_{4}\right)$ is. Use law of total probability

$$
p\left(x_{1}\right)=\sum_{x_{4}} \underbrace{\sum_{x_{2}, x_{3}} p\left(x_{1}, x_{2}, x_{3} \mid x_{4}\right)}_{\text {by message passing }} p\left(x_{4}\right)
$$

(see Barber Section 5.3.2, "Loop-cut conditioning"; not examinable)

Summary

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

Program

1. Marginal inference by variable elimination
2. Marginal inference for factor trees (sum-product algorithm)
3. Inference of most probable states for factor trees

- Maximisers of the marginals \neq maximiser of joint
- We can exploit the factorisation (in the log-domain) using the distributive law $\max (u+v, u+w)=u+\max (v, w)$
- Max-sum message passing

Other inference task

- So far: given a joint distribution $p(\mathbf{x})$, find marginals or conditionals over variables
- Other common inference task:
- Find a setting of the variables that maximises $p(\mathbf{x})$, i.e.

$$
\hat{\mathbf{x}}=\underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x})=\underset{\mathbf{x}}{\operatorname{argmax}} \log p(\mathbf{x})
$$

- Find the corresponding value maximal value of $p(\mathbf{x})$, i.e.

$$
\begin{aligned}
p_{\max } & =p(\hat{\mathbf{x}})=\max _{\mathrm{x}} p(\mathbf{x}) \quad \text { or } \\
\log p_{\max } & =\log p(\hat{\mathbf{x}})=\max _{\mathbf{x}} \log p(\mathbf{x})
\end{aligned}
$$

- Note: the task includes $\operatorname{argmax}_{\mathbf{x}} \tilde{p}\left(\mathbf{x} \mid \mathbf{y}_{o}\right)$, which is known as maximum a-posteriori (MAP) estimation or inference.

Maximisers of the marginals \neq maximiser of joint

- The sum-product algorithm gives us the univariate marginals $p\left(x_{i}\right)$ for all variables x_{1}, \ldots, x_{d}.
- But the vector with the $\operatorname{argmax}_{x_{i}} p\left(x_{i}\right), x_{1}, \ldots, x_{d}$, is not the same as $\operatorname{argmax}_{\mathrm{x}} p(\mathbf{x})$
- Example (Bishop Table 8.1):

x_{1}	x_{2}	$p\left(x_{1}, x_{2}\right)$
0	0	0.3
$\mathbf{1}$	$\mathbf{0}$	0.4
0	1	0.3
1	1	0.0

x_{1}	$p\left(x_{1}\right)$		
	0.6		
$\mathbf{0}$	0.6		

Distributive law to exploit the factorisation

- With the sum-product algorithm, we could compute the marginal $p(x)$ for any x by summing out all other variables and exploiting the factorisation.
- Let us consider the case where x_{d} is the target variable

$$
\begin{align*}
p\left(x_{d}\right) & =\sum_{x_{1}, \ldots, x_{d-1}} p(\mathbf{x}) \tag{16}\\
& =\frac{1}{Z} \sum_{x_{1}, \ldots, x_{d-1}} \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right) \tag{17}
\end{align*}
$$

- For the max problem, we have $p_{\max }=\max _{x_{d}} \eta^{*}\left(x_{d}\right)$

$$
\begin{align*}
\eta^{*}\left(x_{d}\right) & =\max _{x_{1}, \ldots, x_{d-1}} p(\mathbf{x}) \tag{18}\\
& =\frac{1}{Z} \max _{x_{1}, \ldots, x_{d-1}} \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right) \tag{19}
\end{align*}
$$

Max-product algorithm

- The problem has the same structure with the correspondence

$$
\sum_{x_{1}, \ldots, x_{d-1}} \longrightarrow \max _{x_{1}, \ldots, x_{d-1}}
$$

- To compute $p\left(x_{d}\right)$, we relied on the distributive law

$$
\begin{aligned}
a b+a c & =a(b+c) \\
\operatorname{sum}(a b, a c) & =a \operatorname{sum}(b, c)
\end{aligned}
$$

- To compute $\eta^{*}\left(x_{d}\right)$, we can use the distributive law

$$
\max (a b, a c)=a \max (b, c)
$$

- Message passing algorithm by replacing "sum" with "max". Gives max-product algorithm.

Work in the log-domain

- Let us work in the log-domain for numerical stability.
- Consider again

$$
\begin{align*}
p\left(x_{d}\right) & =\sum_{x_{1}, \ldots, x_{d-1}} p(\mathbf{x}) \tag{20}\\
& =\frac{1}{Z} \sum_{x_{1}, \ldots, x_{d-1}} \prod_{i=1}^{m} \phi_{i}\left(\mathcal{X}_{i}\right) \tag{21}
\end{align*}
$$

- Max problem in the log-domain: $\log p_{\max }=\max _{x_{d}} \gamma^{*}\left(x_{d}\right)$

$$
\begin{align*}
\gamma^{*}\left(x_{d}\right) & =\max _{x_{1}, \ldots, x_{d-1}} \log p(\mathbf{x}) \tag{22}\\
& =-\log Z+\max _{x_{1}, \ldots, x_{d-1}} \sum_{i=1}^{m} \log \phi_{i}\left(\mathcal{X}_{i}\right) \tag{23}
\end{align*}
$$

Work in the log-domain

- The problem has the same structure with the correspondence

$$
\sum_{x_{1}, \ldots, x_{d-1}} \longrightarrow \max _{x_{1}, \ldots, x_{d-1}}, \quad \prod_{i=1}^{m} \longrightarrow \sum_{i=1}^{m}, \quad \phi_{i}\left(\mathcal{X}_{i}\right) \longrightarrow \log \phi_{i}\left(\mathcal{X}_{i}\right)
$$

- To compute $p\left(x_{d}\right)$, we relied on the distributive law

$$
\begin{aligned}
a b+a c & =a(b+c) \\
\operatorname{sum}(a b, a c) & =a \operatorname{sum}(b, c)
\end{aligned}
$$

- To compute $\gamma^{*}\left(x_{d}\right)$, we can use the distributive law

$$
\max (\log a+\log b, \log a+\log c)=\log a+\max (\log b, \log c)
$$

- Message passing algorithm by replacing sum with max, products with sums, and factors with log-factors.

Sum-product algorithm with x_{d} as root (recap)

Factor to variable

$\mu_{\phi \rightarrow x}(x)=\sum_{x_{1}, \ldots, x_{j}} \phi\left(x_{1}, \ldots, x_{j}, x\right) \prod_{i=1}^{j} \mu_{x_{i} \rightarrow \phi}\left(x_{i}\right)$ where $\left\{x_{1}, \ldots, x_{j}\right\}=\operatorname{ne}(\phi) \backslash\{x\}$

Variable to factor

$\mu_{x \rightarrow \phi}(x)=\prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x}(x)$
where $\left\{\phi_{1}, \ldots, \phi_{j}\right\}=\operatorname{ne}(x) \backslash\{\phi\}$
Univariate marginal
$p\left(x_{d}\right)=\frac{1}{Z} \prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x_{d}}\left(x_{d}\right)$
$Z=\sum_{x_{d}} \prod_{i=1}^{j} \mu_{\phi_{i} \rightarrow x_{d}}\left(x_{d}\right)$
where $\left\{\phi_{1}, \ldots, \phi_{j}\right\}=\operatorname{ne}\left(x_{d}\right)$

Initialisation

At leaf variable nodes: $\mu_{x \rightarrow \phi}(x)=1$
At leaf factor nodes: $\mu_{\phi \rightarrow x}(x)=\phi(x)$

Max-sum algorithm with x_{d} as root

Factor to variable

$\gamma_{\phi \rightarrow x}(x)=\max _{x_{1}, \ldots, x_{j}} \log \phi\left(x_{1}, \ldots, x_{j}, x\right)+\sum_{i=1}^{j} \gamma_{x_{i} \rightarrow \phi}\left(x_{i}\right)$ where $\left\{x_{1}, \ldots, x_{j}\right\}=\operatorname{ne}(\phi) \backslash\{x\}$

Variable to factor
$\gamma_{x \rightarrow \phi}(x)=\sum_{i=1}^{j} \gamma_{\phi_{i} \rightarrow x}(x)$
where $\left\{\phi_{1}, \ldots, \phi_{j}\right\}=\operatorname{ne}(x) \backslash\{\phi\}$
Maximum probability
$\gamma^{*}\left(x_{d}\right)=-\log Z+\sum_{i=1}^{j} \gamma_{\phi_{i} \rightarrow x_{d}}\left(x_{d}\right)$
$\log p_{\text {max }}=\max _{x_{d}} \gamma^{*}\left(x_{d}\right)$
where $\left\{\phi_{1}, \ldots, \phi_{j}\right\}=\operatorname{ne}\left(x_{d}\right)$

Initialisation

At leaf variable nodes: $\gamma_{x \rightarrow \phi}(x)=0$
At leaf factor nodes: $\gamma_{\phi \rightarrow x}(x)=\log \phi(x)$

Max-sum algorithm

- After computation of $\gamma^{*}\left(x_{d}\right)$, we obtain

$$
\log p_{\max }=\max _{x_{d}} \gamma^{*}\left(x_{d}\right)
$$

Result does not depend on choice of x_{d}.

- Compute $\hat{\mathbf{x}}=\operatorname{argmax}_{\mathrm{x}} p(\mathbf{x})$ recursively via "backtracking".
- When solving the optimisation problem

$$
\gamma_{\phi \rightarrow x}(x)=\max _{x_{1}, \ldots, x_{j}} \log \phi\left(x_{1}, \ldots, x_{j}, x\right)+\sum_{i=1}^{j} \gamma_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

we also build the function (look-up table)

$$
\gamma_{\phi \rightarrow x}^{*}(x)=\underset{x_{1}, \ldots, x_{j}}{\operatorname{argmax}} \log \phi\left(x_{1}, \ldots, x_{j}, x\right)+\sum_{i=1}^{j} \gamma_{x_{i} \rightarrow \phi}\left(x_{i}\right)
$$

which returns the maximiser $\left(\hat{x}_{1}, \ldots, \hat{x}_{j}\right)$ for each value of x.

- Start the recursion with $\hat{x}_{d}=\operatorname{argmax}_{x_{d}} \gamma^{*}\left(x_{d}\right)$, backtrack to the leaf variables to compute $\hat{\mathbf{x}}$.

Example

Model (pmf):

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \propto \phi_{A}\left(x_{1}\right) \phi_{B}\left(x_{2}\right) \phi_{C}\left(x_{1}, x_{2}, x_{3}\right) \phi_{D}\left(x_{3}, x_{4}\right)
$$

Factor graph (tree):

Goal: $\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \hat{x}_{4}\right)=\operatorname{argmax}_{x_{1}, \ldots, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

Example

- Select root towards which we send messages. Here: x_{4}.
- Messages that we need to send:

- Initialise:

$$
\begin{aligned}
\gamma_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) & =\log \phi_{A}\left(x_{1}\right) \\
\gamma_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right) & =\log \phi_{B}\left(x_{2}\right)
\end{aligned}
$$

Example

- x_{1} and x_{2} copy the messages:

$$
\begin{aligned}
& \gamma_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)=\gamma_{\phi_{A} \rightarrow x_{1}}\left(x_{1}\right) \\
& \gamma_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)=\gamma_{\phi_{B} \rightarrow x_{2}}\left(x_{2}\right)
\end{aligned}
$$

- For $\gamma_{\phi_{C} \rightarrow x_{3}}\left(x_{3}\right)$ solve optimisation problem

$$
\begin{aligned}
& \gamma_{\phi_{C} \rightarrow x_{3}}\left(x_{3}\right)=\max _{x_{1}, x_{2}}\left[\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\gamma_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)+\gamma_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)\right] \\
& \gamma_{\phi_{C} \rightarrow x_{3}}^{*}\left(x_{3}\right)=\underset{x_{1}, x_{2}}{\operatorname{argmax}}\left[\log \phi_{C}\left(x_{1}, x_{2}, x_{3}\right)+\gamma_{x_{1} \rightarrow \phi_{C}}\left(x_{1}\right)+\gamma_{x_{2} \rightarrow \phi_{C}}\left(x_{2}\right)\right]
\end{aligned}
$$

for all values of x_{3}.

Example

- x_{3} copies the message: $\gamma_{x_{3} \rightarrow \phi_{D}}\left(x_{3}\right)=\gamma_{\phi_{C} \rightarrow x_{3}}\left(x_{3}\right)$
- For $\gamma_{\phi_{D} \rightarrow x_{4}}\left(x_{4}\right)$ solve optimisation problem

$$
\begin{aligned}
& \gamma_{\phi_{D} \rightarrow x_{4}}\left(x_{4}\right)=\max _{x_{3}}\left[\log \phi_{D}\left(x_{3}, x_{4}\right)+\gamma_{x_{3} \rightarrow \phi_{D}}\left(x_{3}\right)\right] \\
& \gamma_{\phi_{D} \rightarrow x_{4}}^{*}\left(x_{4}\right)=\underset{x_{3}}{\operatorname{argmax}}\left[\log \phi_{D}\left(x_{3}, x_{4}\right)+\gamma_{x_{3} \rightarrow \phi_{D}}\left(x_{3}\right)\right]
\end{aligned}
$$

for all values of x_{4}.

Example

- After computation of $\gamma_{\phi_{D} \rightarrow x_{4}}\left(x_{4}\right)$, we obtain $\log p_{\max }$ as

$$
\begin{aligned}
\log p_{\max } & =\max _{x_{d}} \gamma^{*}\left(x_{d}\right) \\
\gamma^{*}\left(x_{4}\right) & =-\log Z+\gamma_{\phi_{D} \rightarrow x_{4}}\left(x_{4}\right)
\end{aligned}
$$

- This requires knowledge of Z. We can compute Z via the sum-product algorithm.
- Z not needed if we are only interested in $\operatorname{argmax} p\left(x_{1}, \ldots, x_{4}\right)$

Example

Backtracking:

- Compute $\hat{x}_{4}=\operatorname{argmax}_{x_{4}} \gamma^{*}\left(x_{4}\right)=\operatorname{argmax}_{x_{4}} \gamma_{\phi_{D} \rightarrow x_{4}}\left(x_{4}\right)$
- Plug \hat{x}_{4} into look-up table $\gamma_{\phi_{D} \rightarrow x_{4}}^{*}\left(x_{4}\right)$ to look up best value of x_{3} :

$$
\hat{x}_{3}=\gamma_{\phi_{D} \rightarrow x_{4}}^{*}\left(\hat{x}_{4}\right)
$$

- Plug \hat{x}_{3} into look-up table $\gamma_{\phi_{C} \rightarrow x_{3}}^{*}\left(x_{3}\right)$ to look up best values of $\left(x_{1}, x_{2}\right)$:

$$
\left(\hat{x}_{1}, \hat{x}_{2}\right)=\gamma_{\phi C \rightarrow x_{3}}^{*}\left(\hat{x}_{3}\right)
$$

- This gives $\left(\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}, \hat{x}_{4}\right)=\operatorname{argmax}_{x_{1}, \ldots, x_{4}} p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$

Program recap

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law $a b+a c=a(b+c)$ and by caching computations
- Variable elimination for general factor graphs
- The principles of variable elimination also apply to continuous random variables

2. Marginal inference for factor trees (sum-product algorithm)

- Factor trees
- Sum-product algorithm = variable elimination for factor trees
- Messages = effective factors
- The rules for sum-product message passing

3. Inference of most probable states for factor trees

- Maximisers of the marginals \neq maximiser of joint
- We can exploit the factorisation (in the log-domain) using the distributive law $\max (u+v, u+w)=u+\max (v, w)$
- Max-sum message passing

