Expressive Power of Graphical Models

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2022

Recap

- ► Need for efficient representation of probabilistic models
 - Restrict the number of directly interacting variables by making independence assumptions
 - Restrict the form of interaction by making parametric family assumptions
- DAGs and undirected graphs to represent independencies and factorisations
- ► Equivalences between independencies (Markov properties) and factorisation
- Rules for reading independencies from the graph that hold for all distributions that factorise over the graph

Program

- 1. Graphs as independency maps (I-maps)
- 2. Equivalence of I-maps (I-equivalence)

Program

- 1. Graphs as independency maps (I-maps)
 - I-maps
 - Perfect maps
 - Minimal I-maps
 - Strengths and weaknesses of directed and undirected graphs
- 2. Equivalence of I-maps (I-equivalence)

I-map

- ► We have seen that graphs represent independencies. We say that they are independency maps (I-maps).
- ▶ Definition: Let \mathcal{U} be a set of independencies that random variables $\mathbf{x} = (x_1, \dots x_d)$ satisfy. A DAG or undirected graph K with nodes x_i is said to be an independency map (I-map) for \mathcal{U} if the independencies $\mathcal{I}(K)$ asserted by the graph are part of \mathcal{U} :

$$\mathcal{I}(K) \subseteq \mathcal{U}$$

► An I-map is a "directed I-map" if K is a DAG, and an "undirected I-map" if K is an undirected graph.

I-map

The set of independencies \mathcal{U} can be specified in different ways. For example:

as a list of independencies, e.g.

$$\mathcal{U} = \{x_1 \perp \!\!\! \perp x_2\}$$

ightharpoonup as the independencies implied by another graph K_0

$$\mathcal{U} = \mathcal{I}(K_0)$$

▶ denoting by $\mathcal{I}(p)$ all the independencies satisfied by a specific distribution p, we can have

$$\mathcal{U} = \mathcal{I}(p)$$

I-maps and factorisation

- ▶ We have previously found that all independencies asserted by the graph *K* hold for all *p* that factorise over *K*.
- \triangleright Hence, if p factorises over K, we have

$$\mathcal{I}(K) \subseteq \mathcal{I}(p)$$

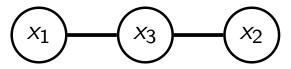
and K is an I-map for $\mathcal{I}(p)$

▶ But we do not have guarantees that $\mathcal{I}(K)$ equals $\mathcal{I}(p)$ since, as we have seen, $\mathcal{I}(K)$ may miss some independencies that hold for p.

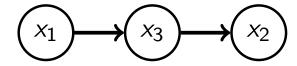
Examples of I-maps

Consider $\mathcal{U} = \{x_1 \perp \!\!\!\perp x_2, x_1 \perp \!\!\!\perp x_2 | x_3, x_2 \perp \!\!\!\perp x_3, x_2 \perp \!\!\!\perp x_3 | x_1 \}$

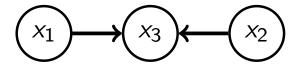
 $ightharpoonup \mathcal{I}(H) = \{x_1 \perp \!\!\! \perp x_2 | x_3\} \subset \mathcal{U}$



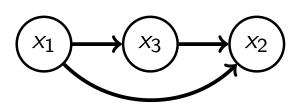
 $\triangleright \mathcal{I}(G) = \{x_1 \perp \!\!\! \perp x_2 | x_3\} \subset \mathcal{U}$



 $ightharpoonup \mathcal{I}(G) = \{x_1 \perp \!\!\! \perp x_2\} \subset \mathcal{U}$



 $ightharpoonup \mathcal{I}(G) = \varnothing \subset \mathcal{U}$



Remarks

- I-maps are not unique.
- Different I-maps may make the same independency assertions.
 (discussed later under I-equivalence)
- Criterion for an I-map is that the independency assertions made by the graph are true. I-maps are not concerned with the number of independency assertions made.
- ightharpoonup I-maps of $\mathcal U$ are allowed to "miss" some independencies in $\mathcal U$.
- Full graph does not make any assertions. Empty set is trivially a subset of any \mathcal{U} , so that the full graph is trivially an I-map.

Perfect maps

- ▶ Definition: K is said to be a perfect I-map (or P-map) for \mathcal{U} if $\mathcal{I}(K) = \mathcal{U}$.
- Let K be a DAG or an undirected graph. For what set \mathcal{U} of independencies is a graph K a perfect map?
- We have seen that: if X are Y and not (d-)separated by Z then $X \not\perp\!\!\!\perp Y|Z$ for some p that factorises over K (some \equiv not all)
- Contrapositive: (Reminder: $A \Rightarrow B \Leftrightarrow \bar{B} \Rightarrow \bar{A}$) if $X \perp \!\!\! \perp Y | Z$ for all p that factorise over K then X and Y are (d-)separated by Z
- ▶ Denote by \mathcal{P}_K the set of all p that factorise over K. We thus have:

$$\left[\bigcap_{p\in\mathcal{P}_K}\mathcal{I}(p)\right]\subseteq\mathcal{I}(K)$$

Perfect maps and factorisation

▶ Since for all individual p we have $\mathcal{I}(K) \subseteq \mathcal{I}(p)$, it follows that

$$\left[\bigcap_{p\in\mathcal{P}_{\mathcal{K}}}\mathcal{I}(p)\right]\subseteq\mathcal{I}(\mathcal{K})\subseteq\left[\bigcap_{p\in\mathcal{P}_{\mathcal{K}}}\mathcal{I}(p)\right]$$

and hence that

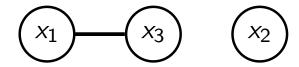
$$\mathcal{I}(K) = \bigcap_{p \in \mathcal{P}_K} \mathcal{I}(p)$$

- In plain English: K is a perfect map for the independencies that hold for all p that factorise over the graph.
- ► This result is not very surprising. It just says that K is a perfect map for the graphical models (set of distributions) that were defined by K in the first place!

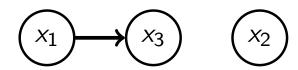
Examples of P-maps

Consider again $\mathcal{U} = \{x_1 \perp \!\!\!\perp x_2, x_1 \perp \!\!\!\perp x_2 | x_3, x_2 \perp \!\!\!\perp x_3, x_2 \perp \!\!\!\perp x_3 | x_1 \}$

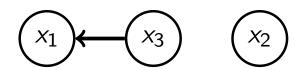
$$ightharpoonup \mathcal{I}(H) = \mathcal{U}$$



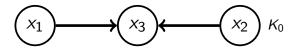
$$ightharpoonup \mathcal{I}(G) = \mathcal{U}$$



$$ightharpoonup \mathcal{I}(G) = \mathcal{U}$$

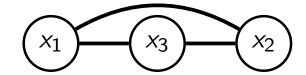


Collider does not have an undirected P-map

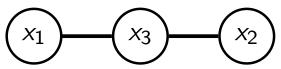


Consider the independencies represented by the collider K_0 .

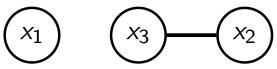
- $\blacktriangleright \text{ Let } \mathcal{U} = \mathcal{I}(K_o) = \{x_1 \perp \!\!\! \perp x_2\}$
- ▶ I-map for \mathcal{U} : $\mathcal{I}(H) = \{\}$



Not an I-map for \mathcal{U} : graph wrongly asserts $x_1 \perp \!\!\! \perp x_2 \mid x_3$



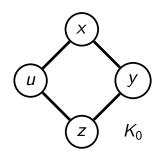
Not an I-map for \mathcal{U} : graph wrongly asserts $x_1 \perp \!\!\! \perp x_3$



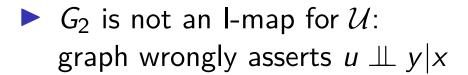
ightharpoonup Going through all undirected graphs shows that there is no undirected perfect I-map for \mathcal{U} .

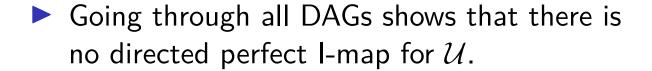
Diamond does not have a directed P-map

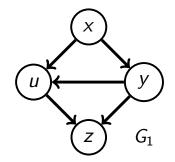
Consider the independencies represented by the diamond configuration K_0 .

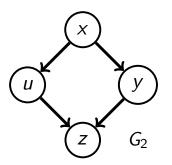


- $\blacktriangleright \text{ Let } \mathcal{U} = \mathcal{I}(K_0) = \{x \perp \!\!\!\perp z | u, y; u \perp \!\!\!\perp y | x, z\}$
- ▶ G_1 is an I-map for \mathcal{U} : $\mathcal{I}(G_1) = \{x \perp \!\!\!\perp z | u, y\} \subset \mathcal{U}$









Minimal I-maps

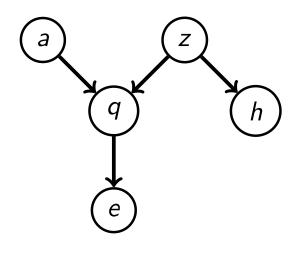
- Directed or undirected perfect maps may not always exist.
- ► On the other hand, criterion for a graph to be an I-map is weak (full graph is an I-map!).
- Compromise: Let us "sparsify" I-maps so that they become more useful.
- Definition: A minimal I-map is an I-map such that if you remove an edge (more independencies), the resulting graph is not an I-map any more.
- Note: A perfect map for \mathcal{U} is also a minimal I-map for \mathcal{U} (being perfect is a stronger requirement than being minimal)

Our previous visualisations of p(x) are minimal I-maps

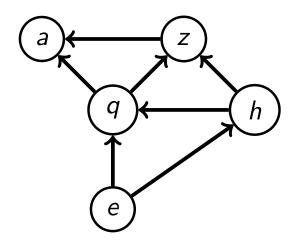
- ▶ To visualise $p(\mathbf{x})$ as a DAG:
 - ► Ordering + independencies $x_i \perp \!\!\! \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$ that $p(\mathbf{x})$ satisfies, where π_i is a *minimal* subset of the predecessors
 - ightharpoonup Construct a graph with the π_i as parents pa_i
 - ▶ Gives a minimal I-map of $\mathcal{I}(p)$ because the π_i are the *minimal* subsets.
- ightharpoonup To visualise $p(\mathbf{x})$ as an undirected graph:
 - \triangleright Determine the Markov blanket for each variable x_i
 - Construct a graph where the neighbours of x_i are its Markov blanket.
 - Gives a minimal I-map of $\mathcal{I}(p)$ because the Markov blanket is the *minimal* set of variables that makes the x_i independent from the remaining variables.

Directed minimal I-maps are not unique

Consider p with perfect I-map G_1 . Use G_1 to determine $x_i \perp \!\!\! \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$ for a given ordering of the variables.



Graph G_1



Minimal I-map G_2 for ordering (e, h, q, z, a), see exercises

- Directed (minimal) I-maps are not unique.
- ▶ Here: $\mathcal{I}(G_2) \subset \mathcal{I}(G_1) = \mathcal{I}(p)$.
- ► The minimal directed I-maps from different orderings may not represent the same independencies. (they are not I-equivalent)

Pros/cons of directed and undirected graphs

- ➤ Some independencies are more easily represented with DAGs, others with undirected graphs.
- ► Both directed and undirected graphical models have strengths and weaknesses.
- ► Undirected graphs are suitable when interactions are symmetrical and when there is no natural ordering of the variables, but they cannot represent "explaining away" phenomena (colliders).
- ► DAGs are suitable when we have an idea of the data generating process (e.g. what is "causing" what), but they may force directionality where there is none.
- ► It is possible to combine the individual strengths with mixed/partially directed graphs (see e.g. Barber, Section 4.3, not examinable).

Program

- 1. Graphs as independency maps (I-maps)
- 2. Equivalence of I-maps (I-equivalence)
 - I-equivalence for DAGs: check the skeletons and the immoralities
 - I-equivalence for undirected graphs: check the skeletons
 - I-equivalence between directed and undirected graphs

I-equivalence for DAGs

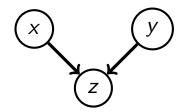
- ► How do we determine whether two DAGs make the same independence assertions (that they are "I-equivalent")?
- From d-separation: what matters is
 - which node is connected to which irrespective of direction (skeleton)
 - the set of collider (head-to-head) connections

Connection	p(x,y)	p(x,y z)
$x \longrightarrow z \longrightarrow y$	х <u> </u>	$x \perp \!\!\!\perp y \mid z$
$x \leftarrow z \rightarrow y$	$x \not\perp \!\!\! \perp y$	$x \perp \!\!\!\perp y \mid z$
x z y	$x \perp \!\!\!\perp y$	$x \not\perp \!\!\!\perp y \mid z$

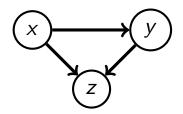
I-equivalence for DAGs

- ► The situation $x \perp\!\!\!\perp y$ and $x \not\perp\!\!\!\perp y \mid z$ can only happen if we have colliders without "covering edge" $x \to y$ or $x \leftarrow y$, that is when parents of the collider node are not directly connected.
- Colliders without covering edge are called "immoralities".
- ▶ Theorem: For two DAGs G_1 and G_2 : G_1 and G_2 are I-equivalent $\iff G_1$ and G_2 have the same skeleton and the same set of immoralities.

(for a proof, see e.g. Theorem 4.4, Koski and Noble, 2009; not examinable)

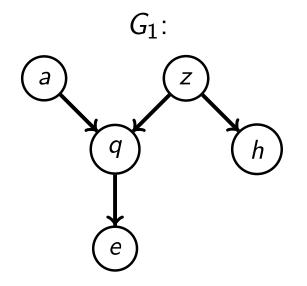


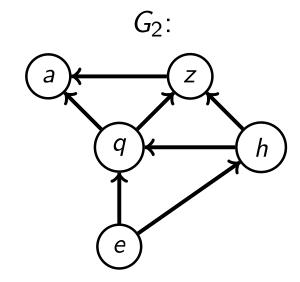
 $x \perp \!\!\!\perp y$ and $x \not\perp \!\!\!\perp y \mid z$ Collider w/o covering edge



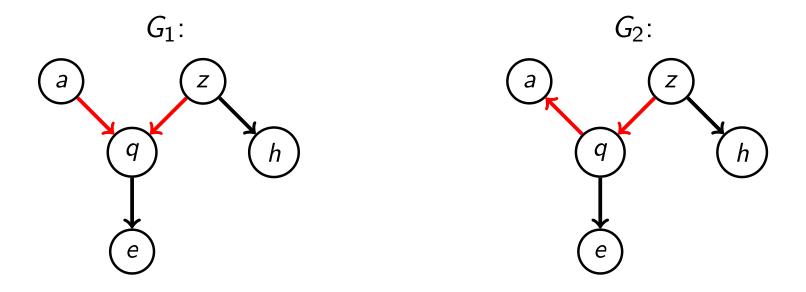
 $x \not\perp \!\!\!\perp y$ and $x \not\perp \!\!\!\perp y \mid z$ Collider with covering edge

Not I-equivalent because of skeleton mismatch:

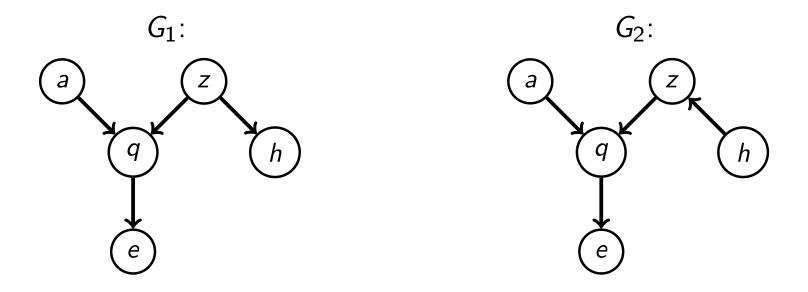




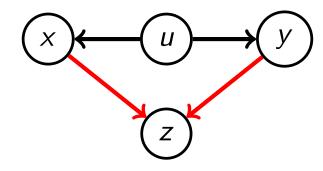
Not I-equivalent because of immoralities mismatch:



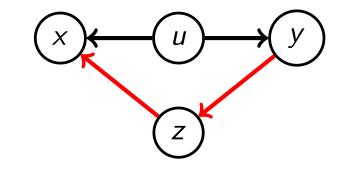
I-equivalent (same skeleton, same immoralities):



Not I-equivalent (immoralities mismatch)



 $x \perp \!\!\!\perp y \mid u$ and $x \not\perp \!\!\!\!\perp y \mid u, z$ Immorality: collider w/o covering edge



 $x \not\perp\!\!\!\perp y \mid u \text{ and } x \perp\!\!\!\perp y \mid u, z$ Not an immorality

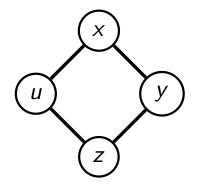
I-equivalence for undirected graphs

- ▶ Different undirected graphs make different independence assertions.
- ► I-equivalent if their skeleton is the same.

I-equivalence between directed and undirected graphs

Recall the example about non-existence of P-maps:

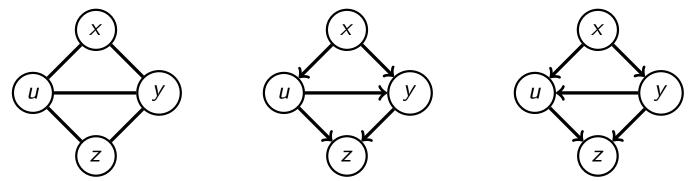
- Immoralities (colliders without covering edge) allow DAGs to represent independencies that cannot be represented with undirected graphs (e.g. $x \perp \!\!\! \perp y$ without enforcing $x \perp \!\!\! \perp y|z$)
- ▶ Diamond configurations (where the loop has length > 3) allow undirected graphs to represent independencies that DAGs cannot represent.
- Connection between the two: Turning a diamond configuration into a DAG introduces an immorality.





I-equivalence between directed and undirected graphs

- ► For DAGs without immoralities, only the skeleton is relevant for I-equivalence. Since the orientation of the arrows does not matter, we can just replace them with undirected edges to obtain an I-equivalent undirected graph.
- ▶ Relatedly, for chordal/triangulated undirected graphs (where the longest loop without shortcuts is a triangle), introducing arrows does not lead to immoralities (there is always a covering edge!) and obtained DAGs are I-equivalent to the undirected graph.
- Example of I-equivalent graphs:



(note the covering edge between u and y)

Program recap

- 1. Graphs as independency maps (I-maps)
 - I-maps
 - Perfect maps
 - Minimal I-maps
 - Strengths and weaknesses of directed and undirected graphs
- 2. Equivalence of I-maps (I-equivalence)
 - I-equivalence for DAGs: check the skeletons and the immoralities
 - I-equivalence for undirected graphs: check the skeletons
 - I-equivalence between directed and undirected graphs