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Recap

I The number of free parameters in probabilistic models
increases with the number of random variables involved.

I Making statistical independence assumptions reduces the
number of free parameters that need to be specified.

I Starting with the chain rule and an ordering of the random
variables, we used statistical independencies to simplify the
representation.

I We thus obtained a factorisation in terms of a product of
conditional pdfs that we visualised as a DAG.

I In turn, we used DAGs to define sets of distributions
(“directed graphical models”).

I We discussed independence properties satisfied by the
distributions, d-separation, and the equivalence to the
factorisation.
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The directionality in directed graphical models

I So far we mainly exploited the property

x ⊥⊥ y | z⇐⇒ p(y|x, z) = p(y|z)

I But when working with p(y|x, z) we impose an ordering or
directionality from x and z to y.

I Directionality matters in directed graphical models
x z y versus x z y

I In some cases, directionality is natural but in others we do not
want to choose one direction over another.

I We now discuss how to visualise and represent probability
distributions and independencies in a symmetric manner
without assuming a directionality or ordering of the variables.
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Program

1. Visualising factorisations with undirected graphs

2. Undirected graphical models
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Program

1. Visualising factorisations with undirected graphs
Undirected characterisation of statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models
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Further characterisation of statistical independence

I From exercises: For non-negative functions a(x, z), b(y, z):

x ⊥⊥ y | z⇐⇒ p(x, y, z) = a(x, z)b(y, z)

I Equivalent to p(x, y, z) = p(x|z)p(y|z)p(z) but does not
assume that the factors are (conditional) pdfs/pmfs.

I No directionality or ordering of the variables is imposed.
I Unconditional version: For non-negative functions a(x), b(y):

x ⊥⊥ y⇐⇒ p(x, y) = a(x)b(y)

I The important point is the factorisation of p(x, y, z) into two
non-negative factors:
I if the factors share a variable z, then we have conditional

independence,
I if not, we have unconditional independence.
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Further characterisation of statistical independence

I Since p(x, y, z) must sum (integrate) to one, we must have∑
x,y,z

a(x, z)b(y, z) = 1

I Normalisation condition often ensured by re-defining
a(x, z)b(y, z):

p(x, y, z) = 1
Z φA(x, z)φB(y, z) Z =

∑
x,y,z

φA(x, z)φB(y, z)

I Z: normalisation constant (related to partition function, see later)
I φi : factors (also called potential functions).

Do generally not correspond to (conditional) pdfs/pmfs.
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What does it mean?

x ⊥⊥ y | z⇐⇒ p(x, y, z) = 1
Z φA(x, z)φB(y, z)

“⇒” If we want our model to satisfy x ⊥⊥ y | z we should write the
pdf (pmf) as

p(x, y, z) ∝ φA(x, z)φB(y, z)

“⇐” If the pdf (pmf) can be written as
p(x, y, z) ∝ φA(x, z)φB(y, z) then we have x ⊥⊥ y | z

equivalent for unconditional version
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Example

Consider p(x1, x2, x3, x4) ∝ φ1(x1, x2)φ2(x2, x3)φ3(x4)

What independencies does p satisfy?
I We can write

p(x1, x2, x3, x4) ∝ [φ1(x1, x2)φ2(x2, x3)]︸ ︷︷ ︸
φ̃1(x1,x2,x3)

[φ3(x4)]

∝ φ̃1(x1, x2, x3)φ3(x4)

so that x4 ⊥⊥ x1, x2, x3.
I Integrating out x4 gives

p(x1, x2, x3) =
∫

p(x1, x2, x3, x4)dx4 ∝ φ1(x1, x2)φ2(x2, x3)

so that x1 ⊥⊥ x3 | x2
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Gibbs distributions

I Example is a special case of a class of pdfs/pmfs that
factorise as

p(x1, . . . , xd) = 1
Z

∏
c
φc(Xc)

I Xc ⊆ {x1, . . . , xd}
I φc are non-negative factors (potential functions)

Do generally not correspond to (conditional) pdfs/pmfs.
They measure “compatibility”, “agreement”, or “affinity”

I Z is a normalising constant so that p(x1, . . . , xd) integrates
(sums) to one.

I Known as Gibbs (or Boltzmann) distributions
I p̃(x1, . . . , xd) =

∏
c φc(Xc) is said to be an unnormalised

model: p̃ ≥ 0 but does not necessarily integrate (sum) to one.
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Energy-based model

I With φc(Xc) = exp (−Ec(Xc)), we have equivalently

p(x1, . . . , xd) = 1
Z exp

[
−

∑
c

Ec(Xc)
]

I
∑

c Ec(Xc) is the energy of the configuration (x1, . . . , xd).
low energy ⇐⇒ high probability
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Visualising Gibbs distributions with undirected graphs

p(x1, . . . , xd) ∝
∏

c φc(Xc)
I Node for each xi
I For all factors φc : draw an undirected edge between all xi and

xj that belong to Xc
I Results in a fully-connected subgraph for all xi that are part of

the same factor (this subgraph is called a clique).

Example:
Graph for p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

x1

x2

x3

x4

x5

x6
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Program

1. Visualising factorisations with undirected graphs
Undirected characterisation of statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models
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Program

1. Visualising factorisations with undirected graphs

2. Undirected graphical models
Definition
Examples
Conditionals, marginals, and change of measure
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Undirected graphical models (UGMs)

I We started with a factorised pdf/pmf and associated a
undirected graph with it. We now go the other way around
and start with an undirected graph.

I Definition An undirected graphical model based on an
undirected graph H with d nodes and associated random
variables xi is the set of pdfs/pmfs that factorise as

p(x1, . . . , xd) = 1
Z

∏
c
φc(Xc)

where Z is the normalisation constant, φc(Xc) ≥ 0, and the
Xc correspond to the maximal cliques in the graph.

I Remark: a pdf/pmf p(x1, . . . , xd) that can be written as
above is said to “factorise over the graph H”. We also say
that it has property F (H) (“F” for factorisation).
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Remarks

I An undirected graph defines the pdfs/pmfs in terms of Gibbs
distributions.

I The undirected graphical model corresponds to a set of
probability distributions. This is because we did not specify
any numerical values for the factors φc(Xc). We only
specified which variables the factors take as input.

I Individual pdfs/pmf in the set are typically also called a
undirected graphical model.

I Other names for an undirected graphical model: Markov
network (MN), Markov random field (MRF)

I The Xc form maximal cliques in the graph.
Maximal clique: a set of fully connected nodes (clique) that is
not contained in another clique.
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Why maximal cliques?

I The mapping from Gibbs distribution to graph is many to one.
We may obtain the same graph for different Gibbs
distributions, e.g.

p(x) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
p(x) ∝ φ̃1(x1, x2)φ̃2(x1, x4)φ̃3(x2, x4)φ̃4(x2, x3)φ̃5(x3, x4)φ̃6(x3, x5)φ̃7(x3, x6)

x1

x2

x3

x4

x5

x6

I By using maximal cliques, we take a conservative approach
and do not make additional assumptions on the factorisation.
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Example
Undirected graph:

x1

x2

x3

x4

x5

x6

Random variables: x = (x1, . . . , x6)

Maximal cliques: {x1, x2, x4}, {x2, x3, x4}, {x3, x5}, {x3, x6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise
as:

p(x) = 1
Z φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
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Example (pairwise Markov network)

Graph:

x1 x2 x3

x4 x5 x6

Random variables: x = (x1, . . . , x6)

Maximal cliques: all neighbours

{x1, x2} {x2, x3} {x4, x5} {x5, x6} {x1, x4} {x2, x5} {x3, x6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise
as:

p(x) ∝φ1(x1, x2)φ2(x2, x3)φ3(x4, x5)φ4(x5, x6)φ5(x1, x4)φ6(x2, x5)φ7(x3, x6)

Example of a pairwise Markov network.
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Conditionals

I For DGMs, the factors k(xi |pai) defining p(x) are the
conditional pdfs/pmfs of xi given pai under p(x), i.e.
p(xi |pai). We do not have such a correspondence for UGMs.

I But conditioning on random variables corresponds to a simple
graph operation: removing their nodes from the graph.

I Example: For p(x1, . . . , x6) specified by the graph below, what
is p(x1, x2, x4, x5, x6|x3 = α)?

x1

x2

x3

x4

x5

x6
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Conditionals

I The graph specifies the factorisation

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

I By definition: p(x1, x2, x4, x5, x6|x3 = α)

= p(x1, x2, x3 = α, x4, x5, x6)∫
p(x1, x2, x3 = α, x4, x5, x6)dx1dx2dx4dx5dx6

= φ1(x1, x2, x4)φ2(x2, α, x4)φ3(α, x5)φ4(α, x6)∫
φ1(x1, x2, x4)φ2(x2, α, x4)φ3(α, x5)φ4(α, x6)dx1dx2dx4dx5dx6

= 1
Z (α)φ1(x1, x2, x4)φ

α
2 (x2, x4)φα3 (x5)φα4 (x6)

I Gibbs distribution with derived factors φαi of reduced domain
and new normalisation “constant” Z (α)

I Note that Z (α) depends on the conditioning value α.
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Conditionals

Let p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6).
I Conditional p(x1, x2, x4, x5, x6|x3 = α) is

1
Z (α)φ1(x1, x2, x4)φ

α
2 (x2, x4)φα3 (x5)φα4 (x6)

I Conditioning on variables removes the corresponding nodes
and connecting edges from the undirected graph

x1

x2

x4

x5

x6

x3
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Marginals

I For DGMs, the product of the first j terms in the factorisation,∏j
i=1 k(xi |pai), equaled the marginal p(x1, . . . , xj).

I UGMs do not have such a general property. But we can
exploit the factorisation when computing the marginals.

I Will be the discussed in the “inference part” of the course.
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Change of measure
I A way to create new pdf/pmfs is to reweight existing ones,

which is a special instance of a “change of measure”.
I For example, assume q(x1, x2, x3) =

∏
i qi(xi) to be a given

pmf. We want to generate a new pmf that assigns higher
probabilities to (x1, x2) ∈ A, and to (x2, x3) ∈ B, for some sets
A and B.

I We can thus define the Gibbs distribution

p(x) = 1
Z φA(x1, x2)φB(x2, x3)

3∏
i=1

qi(xi)

where φA(x1, x2) = 1 for (x1, x2) /∈ A, φA(x1, x2) > 1 for
(x1, x2) ∈ A, and equivalently for φB.

x1 x2 x3

graph for q(x)

x1 x2 x3

graph for p(x)
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Change of measure
I Similarly, we can think that an undirected graph defines how a

base distribution, e.g. q(x) =
∏

i qi(xi), should be reweighted
by factors φc(Xc), thus defining a change of measure.

I Two different ways of defining models: Reweighting for UGMs
vs data generation for DGMs.

I Reweighting well visible when computing expectations, e.g.

Ep[h] =
∑
x

h(x)p(x)

= 1
Z

∑
x1,x2,x3

h(x1, x2, x3)φA(x1, x2)φB(x2, x3)
∏

i
qi(xi)

= 1
Z Eq[hφAφB]

I Since Z =
∑

x1,x2,x3 φA(x1, x2)φB(x2, x3)
∏

i qi(xi) = Eq[φAφB]

Ep[h] = Eq[hφAφB]
Eq[φAφB]Change of measure
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Program recap

1. Visualising factorisations with undirected graphs
Undirected characterisation of statistical independence
Gibbs distributions
Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models
Definition
Examples
Conditionals, marginals, and change of measure
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