Directed Graphical Models II Independencies

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2022

Recap

- ➤ Statistical independence assumptions facilitate the efficient representation of probabilistic models by limiting the number of variables that are allowed to directly interact with each other.
- Visualisation of factorised pdfs/pmfs as directed acyclic graphs (DAGs).
- DAGs to define sets of pdfs/pmfs in terms of a factorisation: directed graphical models
- ► The factors correspond to conditionals of the pdf/pmf, which defines a data generating process called ancestral sampling.

Program

- 1. Directed ordered Markov property
- 2. D-separation and the directed global Markov property
- 3. Further methods to determine independencies

Program

- 1. Directed ordered Markov property
 - Definition
 - Equivalence between factorisation and directed ordered Markov property
 - Examples
- 2. D-separation and the directed global Markov property
- 3. Further methods to determine independencies

Factorisation implies independencies

ightharpoonup Given a DAG G, we defined the directed graphical model to be the set of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d)=\prod_{i=1}^d k(x_i|pa_i)$$

for some conditional pdfs/pmfs $k(x_i|pa_i)$. We said that such $p(\mathbf{x})$ satisfy F(G).

- We have seen that $k(x_i|pa_i) = p(x_i|pa_i) = p(x_i|pe_i)$ for any ordering of the variables that is topological to G.
- \triangleright This means that $p(\mathbf{x})$ satisfies the independencies

$$x_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$$
 for all i

This holds for all orderings of the variables that are topological to G.

▶ We say that $p(\mathbf{x})$ satisfies the directed ordered Markov property relative to G, or $M_o(G)$ in short.

Equivalence between F(G) and $M_o(G)$

- ightharpoonup We can summarise the above as $F(G) \Longrightarrow M_o(G)$.
- We use the chain rule to show the reverse, i.e. $M_o(G) \Longrightarrow F(G)$:
 - ightharpoonup Given G, order the variables topologically to the graph
 - \triangleright Decompose p(x) using the chain rule

$$p(\mathbf{x}) = \prod_{i} p(x_i | \text{pre}_i)$$

Since $p(\mathbf{x})$ satisfies $M_o(G)$, we have $p(x_i|\mathrm{pre}_i) = p(x_i|\mathrm{pa}_i)$ and hence

$$p(\mathbf{x}) = \prod_i p(x_i | \mathrm{pa}_i)$$

so that $p(\mathbf{x})$ satisfies F(G).

▶ We thus have the equivalence $F(G) \iff M_o(G)$.

Two equivalent views on directed graphical models

1. Factorisation (generative) view point:

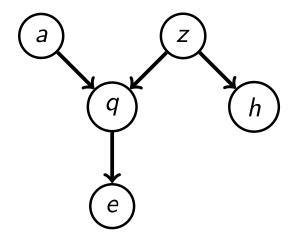
- We said the directed graphical model implied by a DAG G is the set of pdfs/pmfs that satisfy F(G).
- lt's the set of models that you obtain by looping over all possible factors $k(x_i|pa_i)$
- In other words, it's all the data that you can generate using ancestral sampling with different conditionals.

2. Independence (filtering) view point:

- Equivalently, we can say that the directed graphical model implied by a DAG G is the set of pdfs/pmfs that satisfy $M_o(G)$.
- It's the set of models that you obtain by filtering out from all possible models those that satisfy $M_o(G)$.
- In other words, it's all the data for which $M_o(G)$ holds. (Idem for further Markov properties that we will derive, the directed global Markov property $M_g(G)$ and the directed local Markov property $M_l(G)$.)

Example

DAG:



Topological ordering: (a, z, q, e, h)

Predecessor sets for the ordering:

$$\operatorname{pre}_a = \varnothing, \operatorname{pre}_z = \{a\}, \operatorname{pre}_q = \{a,z\}, \operatorname{pre}_e = \{a,z,q\}, \operatorname{pre}_h = \{a,z,q,e\}$$

Parent sets

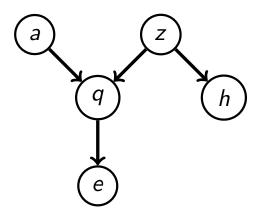
$$\operatorname{pa}_{\boldsymbol{a}} = \operatorname{pa}_{\boldsymbol{z}} = \varnothing, \operatorname{pa}_{\boldsymbol{q}} = \{\boldsymbol{a}, \boldsymbol{z}\}, \operatorname{pa}_{\boldsymbol{e}} = \{\boldsymbol{q}\}, \operatorname{pa}_{\boldsymbol{h}} = \{\boldsymbol{z}\}$$

All models defined by the DAG satisfy $x_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$:

$$z \perp \!\!\!\perp a$$
 $e \perp \!\!\!\perp \{a,z\} \mid q$ $h \perp \!\!\!\perp \{a,q,e\} \mid z$

Example (different topological ordering)

DAG:



Topological ordering: (a, z, h, q, e)

Predecessor sets for the ordering:

$$\operatorname{pre}_{a}=\varnothing, \operatorname{pre}_{z}=\{a\}, \operatorname{pre}_{h}=\{a,z\}, \operatorname{pre}_{q}=\{a,z,h\}, \operatorname{pre}_{e}=\{a,z,h,q\}$$

Parent sets: as before

$$\operatorname{pa}_{\boldsymbol{a}} = \operatorname{pa}_{\boldsymbol{z}} = \varnothing, \operatorname{pa}_{\boldsymbol{h}} = \{\boldsymbol{z}\}, \operatorname{pa}_{\boldsymbol{q}} = \{\boldsymbol{a}, \boldsymbol{z}\}, \operatorname{pa}_{\boldsymbol{e}} = \{\boldsymbol{q}\}$$

All models defined by the DAG satisfy $x_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$:

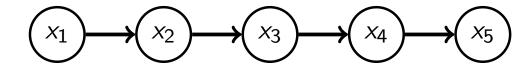
$$z \perp \!\!\! \perp a$$
 $h \perp \!\!\! \perp a \mid z$ $q \perp \!\!\! \perp h \mid a,z$ $e \perp \!\!\! \perp \{a,z,h\} \mid q$

Note: the models also satisfy those obtained with the previous ordering:

$$z \perp \!\!\! \perp a$$
 $e \perp \!\!\! \perp \{a,z\} \mid q$ $h \perp \!\!\! \perp \{a,q,e\} \mid z$

Example: Markov chain

DAG:



There is only one topological ordering: $(x_1, x_2, ..., x_5)$

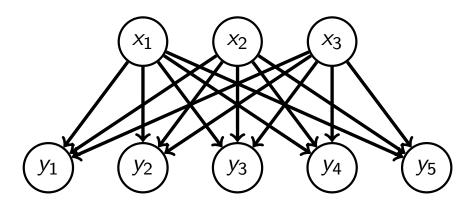
All models defined by the DAG satisfy: $x_{i+1} \perp \!\!\! \perp x_1, \ldots, x_{i-1} \mid x_i$

(future independent of the past given the present)

Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG:



Topological ordering $(x_1, x_2, x_3, y_1, y_2, y_3, y_4, y_5)$

All models defined by the DAG satisfy:

$$x_i \perp \!\!\! \perp x_j \qquad y_2 \perp \!\!\! \perp y_1 \mid x_1, x_2, x_3 \qquad y_3 \perp \!\!\! \perp y_1, y_2 \mid x_1, x_2, x_3$$

 $y_4 \perp \!\!\! \perp y_1, y_2, y_3 \mid x_1, x_2, x_3 \qquad y_5 \perp \!\!\! \perp y_1, y_2, y_3, y_4 \mid x_1, x_2, x_3$

 y_5 is independent from all the other y_i given x_1, x_2, x_3 . Using further topological orderings shows that all y_i are independent from each other given x_1, x_2, x_3 .

(Marginally the y_i are not independent. The model explains possible dependencies between (observed) y_i through fewer (unobserved) x_i , see later.)

Remarks

- By using different topological orderings you can generate possibly different independence relations satisfied by the model.
- ► While they imply each other, deriving them from each other from the basic definition of independence may not be straightforward.
- Missing edges in a DAG cause the pa_i to be smaller than the pre_i , and thus lead to the independencies $x_i \perp pre_i \setminus pa_i \mid pa_i$.
- ► Instead of "directed ordered Markov property", we may just say "ordered Markov property" if it is clear that we talk about DAGs.

Program

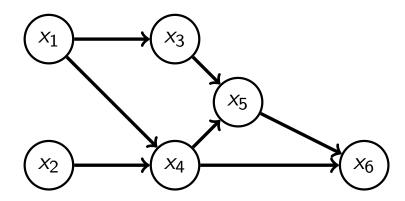
- 1. Directed ordered Markov property
 - Definition
 - Equivalence between factorisation and directed ordered Markov property
 - Examples
- 2. D-separation and the directed global Markov property
- 3. Further methods to determine independencies

Program

- 1. Directed ordered Markov property
- 2. D-separation and the directed global Markov property
 - Canonical connections
 - D-separation
 - Recipe and examples
- 3. Further methods to determine independencies

Further independence relations

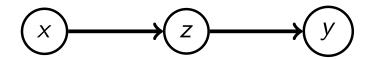
- ► Given the DAG below, what can we say about the independencies for the set of probability distributions that factorise over the graph?
- ► Is $x_1 \perp \!\!\! \perp x_2$? $x_1 \perp \!\!\! \perp x_2 \mid x_6$? $x_2 \perp \!\!\! \perp x_3 \mid \{x_1, x_4\}$?
- Ordered Markov properties give some independencies.
- ▶ Limitation: it only allows us to condition on parent sets.
- Directed separation (d-separation) gives further independencies.



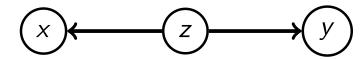
Three canonical connections in a DAG

In a DAG, two nodes x, y can be connected via a third node z in three ways:

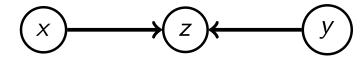
1. Serial connection (chain, head-tail or tail-head)



2. Diverging connection (fork, tail-tail)



3. Converging connection (collider, head-head, v-structure)



Note: in any case, the sequence x, z, y forms a trail

Independencies for the three canonical connections

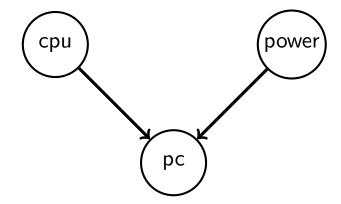
(Derived in the exercises)

Connection	p(x,y)	p(x,y z)	z node
$X \longrightarrow Z \longrightarrow Y$	<i>x</i>	$x \perp \!\!\!\perp y \mid z$	default: open instantiated: closed
$X \leftarrow Z \rightarrow Y$	x	$x \perp \!\!\!\perp y \mid z$	default: open instantiated: closed
$X \longrightarrow Z \longleftarrow Y$	<i>x</i>	$x \not\perp \!\!\! \perp y \mid z$	default: closed with evidence: opens

Think of the z node as a valve or gate through which evidence (probability mass) can flow. Depending on the type of the connection, it's default state is either open or closed. Instantiation/evidence acts as a switch on the valve.

Colliders model "explaining away"

Example:



- One day your computer does not start and you bring it to a repair shop. You think the issue could be the power unit or the cpu.
- Investigating the power unit shows that it is damaged. Is the cpu fine?
- Without further information, finding out that the power unit is damaged typically reduces our belief that the cpu is damaged

Finding out about the damage to the power unit *explains* away the observed start-issues of the computer.

D-separation

Let $X = \{x_1, \ldots, x_n\}$, $Y = \{y_1, \ldots, y_m\}$, and $Z = \{z_1, \ldots, z_r\}$ be three disjoint sets of nodes in the graph. Assume all z_i are observed (instantiated).

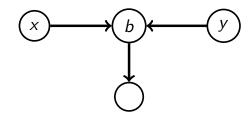
- ▶ Two nodes x_i and y_j are said to be d-separated by Z if all trails between them are blocked by Z.
- ► The sets X and Y are said to be d-separated by Z if every trail from any variable in X to any variable in Y is blocked by Z.

D-separation

A trail between nodes x and y is blocked by Z if there is a node b on the trail such that

1. either b is part of a head-tail or tail-tail connection along the trail and b is in Z,

2. or b is part of a head-head (collider) connection along the trail and neither b nor any of its descendants are in Z.



It's like treating a segment of the trail as a canonical connection.

D-separation and conditional independence

Theorem: If X and Y are d-separated by Z then $X \perp\!\!\!\perp Y \mid Z$ for all probability distributions that factorise over the DAG.

For those interested: A proof can be found in Section 2.8 of *Bayesian Networks* – *An Introduction* by Koski and Noble (not examinable)

Important because:

- 1. the theorem allows us to read out (conditional) independencies from the graph
- 2. no restriction on the sets X, Y, Z
- 3. the theorem shows that statistical independencies detected by d-separation, which is purely a graph-based criterion, do always hold. They are "true positives" ("soundness of d-separation").

Directed global Markov property $M_g(G)$

- Distributions $p(\mathbf{x})$ are said to satisfy the directed global Markov property with respect to the DAG G, or $M_g(G)$, if for any triple X, Y, Z of disjoint subsets of nodes such that X and Y are d-separated by Z in G, we have $X \perp\!\!\!\perp Y|Z$.
- ▶ Global Markov property because we do not restrict the sets X, Y, Z.
- ▶ The theorem says that $F(G) \Longrightarrow M_g(G)$.
- ightharpoonup We thus have so far $M_o(G) \iff F(G) \Longrightarrow M_g(G)$.

What if two sets of nodes are not d-separated?

Theorem: If X and Y are not d-separated by Z then $X \not\perp\!\!\!\perp Y \mid Z$ in some probability distributions that factorise over the DAG.

For those interested: A proof sketch can be found in Section 3.3.1 of *Probabilistic Graphical Models* by Koller and Friedman (not examinable).

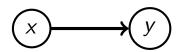
What if two sets of nodes are not d-separated?

- ► However, it can also be that d-connected variables are independent for some distributions that factorise over the graph.
- ► Example (Koller, Example 3.3): p(x, y) with $x, y \in \{0, 1\}$ and

$$p(y = 0|x = 0) = a$$
 $p(y = 0|x = 1) = a$

for a > 0 and some non-zero p(x = 0).

ightharpoonup Graph has arrow from x to y. Variables are not d-separated.



- p(y = 0) = ap(x = 0) + ap(x = 1) = a, which is p(y = 0|x) for all x.
- p(y = 1) = (1 a)p(x = 0) + (1 a)p(x = 1) = 1 a, which is p(y = 1|x) for all x.
- ▶ Hence: p(y|x) = p(y) so that $x \perp \!\!\!\perp y$.

D-separation is not complete

- ► This means that d-separation does generally not reveal all independencies in all probability distributions that factorise over the graph.
- In other words, individual probability distributions that factorise over the graph may have further independencies not included in the set obtained by d-separation. This is because the graph criteria do not operate on the numerical values of the factors but only on "whom affects whom", i.e. the parent-children relationships.
- ▶ We say that d-separation is not "complete" ("recall-rate" is not guaranteed to be 100%).

Recipe to determine whether two nodes are d-separated

- 1. Determine all trails between x and y (note: direction of the arrows does here not matter).
- 2. For each trail:
 - i Determine the default state of all nodes on the trail.
 - open if part of a head-tail or a tail-tail connection
 - closed if part of a head-head connection
 - ii Check whether the set of observed nodes Z switches the state of the nodes on the trail.
 - iii The trail is blocked if it contains a closed node.
- 3. The nodes x and y are d-separated if all trails between them are blocked.

Example: Are x_1 and x_2 d-separated?

Follows from ordered Markov property, but let us answer it with d-separation.

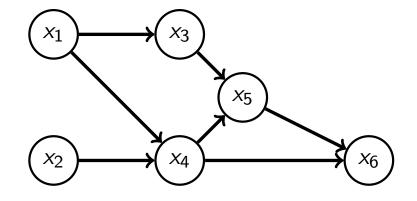
- 1. Determine all trails between x_1 and x_2
- 2. For trail x_1, x_4, x_2
 - i default state
 - ii conditioning set is empty
 - iii ⇒ Trail is blocked

For trail x_1, x_3, x_5, x_4, x_2

- i default state
- ii conditioning set is empty
- $iii \Rightarrow Trail$ is blocked

Trail $x_1, x_3, x_5, x_6, x_4, x_2$ is blocked too (same arguments).

3. $\Rightarrow x_1$ and x_2 are d-separated.

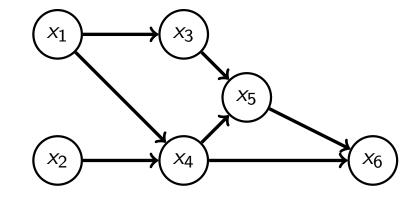


 $x_1 \perp \!\!\! \perp x_2$ for all probability distributions that factorise over the graph.

Example: Are x_1 and x_2 d-separated by x_6 ?

- 1. Determine all trails between x_1 and x_2
- 2. For trail x_1, x_4, x_2
 - i default state
 - ii influence of x_6
 - iii ⇒ Trail not blocked

No need to check the other trails: x_1 and x_2 are not d-separated by x_6



 $x_1 \perp \!\!\! \perp x_2 \mid x_6$ does not hold for all probability distributions that factorise over the graph.

Example: Are x_2 and x_3 d-separated by x_1 and x_4 ?

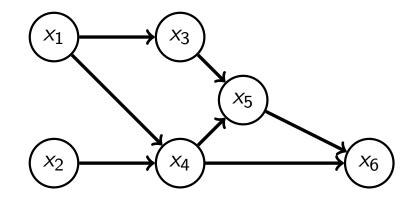
- 1. Determine all trails between x_2 and x_3
- 2. For trail x_3, x_1, x_4, x_2
 - i default state
 - ii influence of $\{x_1, x_4\}$
 - iii ⇒ Trail blocked

For trail x_3, x_5, x_4, x_2

- i default state
- ii influence of $\{x_1, x_4\}$
- iii ⇒ Trail blocked

Trail x_3, x_5, x_6, x_4, x_2 is blocked too (same arguments).

3. $\Rightarrow x_2$ and x_3 are d-separated by x_1 and x_4 .

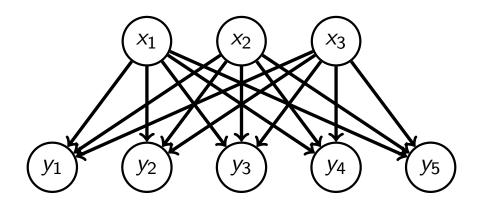


 $x_2 \perp \!\!\!\! \perp x_3 \mid \{x_1, x_4\}$ for all probability distributions that factorise over the graph.

Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG:



- From ordered Markov property: e.g. $y_5 \perp \!\!\! \perp y_1, y_2, y_3, y_4 | x_1, x_2, x_3$.
- Via d-separation: $y_i \not\perp \!\!\!\perp y_k$ since the x are in a tail-tail connection with the y's.
- ▶ Via d-separation: $x_i \perp \!\!\! \perp x_j$ since all trails between them go through y's that are in a collider configuration.
- ▶ Via d-separation: $x_i \not\perp \!\!\!\!\perp x_j \mid y_k$ for any $i, j, k, (i \neq j)$. This is the "explaining away" phenomenon.

Program

- 1. Directed ordered Markov property
- 2. D-separation and the directed global Markov property
 - Canonical connections
 - D-separation
 - Recipe and examples
- 3. Further methods to determine independencies

Program

- 1. Directed ordered Markov property
- 2. D-separation and the directed global Markov property
- 3. Further methods to determine independencies
 - Directed local Markov property
 - Equivalences
 - Markov blanket

Directed local Markov property

- ► The independencies that you can obtain with the ordered Markov property depend on the topological ordering chosen.
- ► We next introduce the "directed local Markov property" that does not depend on the ordering but only on the graph.
- We say that $p(\mathbf{x})$ satisfies the directed local Markov property, $M_I(G)$ with respect to DAG G if

$$x_i \perp \!\!\!\perp (\operatorname{nondesc}(x_i) \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$$

holds for all i, where pa_i denotes the parents and $nondesc(x_i)$ the non-descendants of x_i .

In other words, p(x) satisfying the directed local Markov property means that

$$p(x_i|\operatorname{nondesc}(x_i)) = p(x_i|\operatorname{pa}_i)$$
 for all i

Directed local Markov property

- ▶ We now show that $M_o(G) \iff M_I(G)$ for any DAG G.
- In words: If p(x) satisfies the ordered Markov property it also satisfies the directed local Markov property and vice versa:

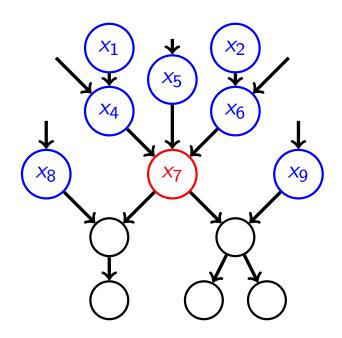
$$x_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \operatorname{pa}_i) | \operatorname{pa}_i \Longleftrightarrow x_i \perp \!\!\!\perp (\operatorname{nondesc}(x_i) \setminus \operatorname{pa}_i) | \operatorname{pa}_i$$

$$x_i \equiv x_7$$

$$\mathrm{pa}_7 = \{x_4, x_5, x_6\}$$

$$\mathrm{pre}_7 = \{x_1, x_2, \dots, x_6\}$$

$$\mathrm{nondesc}(x_7) \text{ in blue}$$



Directed local Markov property

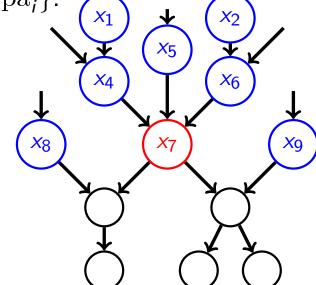
 $x_i \perp \operatorname{pre}_i \setminus \operatorname{pa}_i | \operatorname{pa}_i \leftarrow x_i \perp \operatorname{nondesc}(x_i) \setminus \operatorname{pa}_i | \operatorname{pa}_i$ follows because (1) $\{x_1, \ldots, x_{i-1}\} \subseteq \operatorname{nondesc}(x_i)$ for all topological orderings, and (2) $x \perp \!\!\! \perp \{y, w\} \mid z$ implies that $x \perp \!\!\! \perp y \mid z$ and $x \perp \!\!\! \perp w \mid z$.

For \Rightarrow , assume $p(\mathbf{x})$ follows the ordered Markov property. It then factorises over the graph and hence satisfies $M_g(G)$, and we can use d-separation to establish independence.

Consider all trails from x_i to $\{\operatorname{nondesc}(x_i) \setminus \operatorname{pa}_i\}$.

Two cases: move upwards or downwards:

- (1) upward trails are blocked by the parents
- (2) downward trails must contain a head-head (collider) connection because the $x_j \in \{\text{nondesc}(x_i) \setminus \text{pa}_i\}$ is a non-descendant. These paths are blocked because the collider node or its descendants are never part of pa_i .



The result follows because all paths from x_i to all elements in $\{\text{nondesc}(x_i) \setminus \text{pa}_i\}$ are blocked.

Equivalences so far

 \triangleright For a DAG G, we have established the following relationships:

$$M_g(G) \iff F(G) \iff M_o(G) \iff M_l(G)$$

- ▶ We can close the loop by showing that $M_g(G) \Longrightarrow M_l(G)$.
- ▶ If $p(\mathbf{x})$ satisfies $M_g(G)$ we can use d-separation to read our dependencies.
- The same reasoning as in the second part of the previous proof thus shows that $x_i \perp \!\!\! \perp (\operatorname{nondesc}(x_i) \setminus \operatorname{pa}_i) \mid \operatorname{pa}_i$ holds.
- ► Hence $M_g(G) \Longrightarrow M_I(G)$ and thus:

$$M_g(G) \iff F(G) \iff M_o(G) \iff M_l(G)$$

Summary of the equivalences

For a DAG G with nodes (random variables) x_i and parent sets pa_i , we have the following equivalences:

$$p(\mathbf{x})$$
 satisfies $F(G)$
 $p(\mathbf{x}) = \prod_{i=1}^d k(x_i | \mathrm{pa}_i)$
 $p(\mathbf{x})$ satisfies $M_o(G)$
 $p(\mathbf{x})$ satisfies $M_i(G)$
 $p(\mathbf{x})$ satisfies $p(\mathbf{x})$ independencies asserted by d-separation

F: factorisation property, M_o : directed ordered MP, M_l : directed local MP, M_g : directed global MP (MP: Markov property)

Broadly speaking, the graph serves two related purposes:

- 1. it tells us how distributions factorise
- 2. it represents the independence assumptions made

What can we do with the equivalences?

The main things that we have covered:

- If we know the factorisation of a $p(\mathbf{x})$ in terms of conditional pdfs/pmfs, we can build a graph G such that $p(\mathbf{x})$ satisfies F(G) and then use the graph to determine independencies that $p(\mathbf{x})$ satisfies.
- Similarly, if for some ordering of the random variables, we know the independencies $x_i \perp \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$ that $p(\mathbf{x})$ satisfies, where π_i is a minimal subset of the predecessors, we can obtain a graph G by identifying the π_i with the parents pa_i in a graph. By construction, $p(\mathbf{x})$ satisfies $M_o(G)$. From the graph we can obtain the factorisation of $p(\mathbf{x})$ and further independencies.
- ➤ We can start with the graph and check which independencies it implies, and, when happy, define a set of pdfs/pdfs that all satisfy the specified independencies.

What can we do with the equivalences?

What we haven't covered:

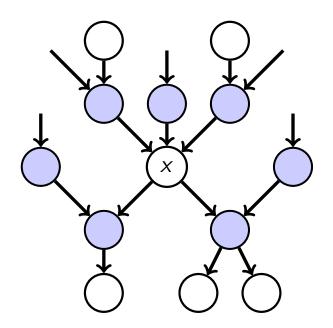
- ightharpoonup How to determine a graph G from an arbitrary set of independencies
- ► How to learn the graph from samples from p(x) (structure learning)
- ► These are difficult topics:
 - ► Multiple DAGs may express the same independencies and there may be no DAG that expresses all desired independencies (see later)
 - Learning the graph from samples involves independence tests which are not 100% accurate and errors propagate and may change the structure of the resulting DAG.
- Areas of active research, in particular in the field of causality.

Markov blanket

What is the minimal set of variables such that knowing their values makes x independent from the rest?

From d-separation:

- Isolate x from its ancestors
 - \Rightarrow condition on parents
- Isolate x from its descendants
 - \Rightarrow condition on children
- Deal with collider connection
 - \Rightarrow condition on co-parents (other parents of the children of x)



In directed graphical models, the parents, children, and co-parents of x are called its Markov blanket, denoted by $\mathrm{MB}(x)$. We have $x \perp\!\!\!\perp \{\mathrm{all\ vars} \setminus x \setminus \mathrm{MB}(x)\} \mid \mathrm{MB}(x)$.

Program recap

- 1. Directed ordered Markov property
 - Definition
 - Equivalence between factorisation and directed ordered Markov property
 - Examples
- 2. D-separation and the directed global Markov property
 - Canonical connections
 - D-separation
 - Recipe and examples
- 3. Further methods to determine independencies
 - Directed local Markov property
 - Equivalences
 - Markov blanket