

Exercise 1. Inverse transform sampling

The cumulative distribution function (cdf) $F_x(\alpha)$ of a (continuous or discrete) random variable x indicates the probability that x takes on values smaller or equal to α ,

$$F_x(\alpha) = \mathbb{P}(x \le \alpha). \tag{1}$$

For continuous random variables, the cdf is defined via the integral

$$F_x(\alpha) = \int_{-\infty}^{\alpha} p_x(u) \mathrm{d}u,\tag{2}$$

where p_x denotes the pdf of the random variable x (u is here a dummy variable). Note that F_x maps the domain of x to the interval [0, 1]. For simplicity, we here assume that F_x is invertible.

For a continuous random variable x with cdf F_x show that the random variable $y = F_x(x)$ is uniformly distributed on [0,1].

Hint: Determine the cdf of y.

Importantly, this implies that for a random variable y which is uniformly distributed on [0,1], the transformed random variable $F_x^{-1}(y)$ has cdf F_x . This gives rise to a method called "inverse transform sampling" to generate n iid samples of a random variable x with cdf F_x . Given a target cdf F_x , the method consists of:

- calculating the inverse F_x^{-1}
- sampling n iid random variables uniformly distributed on [0,1]: $y^i \sim \mathcal{U}(0,1), i = 1, ..., n$.
- transforming each sample by F_x^{-1} : $x^i = F_x^{-1}(y^i)$, i = 1, ..., n.

By construction of the method, the x^i are n iid samples of x.

Solution. We start with the cumulative distribution function (cdf) F_y for y,

$$F_y(\beta) = \mathbb{P}(y \le \beta). \tag{S.1}$$

Since $F_x(x)$ maps x to [0,1], $F_y(\beta)$ is zero for $\beta < 0$ and one for $\beta > 1$. We next consider $\beta \in [0,1]$.

Let α be the value of x that F_x maps to β , i.e. $F_x(\alpha) = \beta$, which means $\alpha = F_x^{-1}(\beta)$. Since F_x is a non-decreasing function, we have

$$F_y(\beta) = \mathbb{P}(y \le \beta) = \mathbb{P}(F_x(x) \le \beta) = \mathbb{P}(x \le F_x^{-1}(\beta)) = \mathbb{P}(x \le \alpha) = F_x(\alpha).$$
(S.2)

Since $\alpha = F_x^{-1}(\beta)$ we obtain

$$F_y(\beta) = F_x(F_x^{-1}(\beta)) = \beta \tag{S.3}$$

The cdf F_y is thus given by

$$F_y(\beta) = \begin{cases} 0 & \text{if } \beta < 0\\ \beta & \text{if } \beta \in [0, 1]\\ 1 & \text{if } \beta > 1 \end{cases}$$
(S.4)

which is the cdf of a uniform random variable on [0, 1]. Hence $y = F_x(x)$ is uniformly distributed on [0, 1].

Exercise 2. Sampling from a Laplace random variable

A Laplace random variable x of mean zero and variance one has the density p(x)

$$p(x) = \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|x|\right) \qquad x \in \mathbb{R}.$$
(3)

Use inverse transform sampling to generate n iid samples from x.

Solution. The main task is to compute the cumulative distribution function (cdf) F_x of x and its inverse. The cdf is by definition

$$F_x(\alpha) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|u|\right) du.$$
 (S.5)

We first consider the case where $\alpha \leq 0$. Since -|u| = u for $u \leq 0$, we have

$$F_x(\alpha) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2}} \exp\left(\sqrt{2}u\right) du$$
 (S.6)

$$= \frac{1}{2} \exp\left(\sqrt{2}u\right) \Big|_{-\infty}^{\alpha} \tag{S.7}$$

$$=\frac{1}{2}\exp\left(\sqrt{2}\alpha\right).\tag{S.8}$$

For $\alpha > 0$, we have

$$F_x(\alpha) = \int_{-\infty}^{\alpha} \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}|u|\right) du$$
 (S.9)

$$=1-\int_{\alpha}^{\infty}\frac{1}{\sqrt{2}}\exp\left(-\sqrt{2}|u|\right)\mathrm{d}u\tag{S.10}$$

where we have used the fact that the pdf has to integrate to one. For values of u > 0, -|u| = -u, so that

$$F_x(\alpha) = 1 - \int_{\alpha}^{\infty} \frac{1}{\sqrt{2}} \exp\left(-\sqrt{2}u\right) du$$
 (S.11)

$$=1+\frac{1}{2}\exp\left(-\sqrt{2}u\right)\Big|_{\alpha}^{\infty}$$
(S.12)

$$= 1 - \frac{1}{2} \exp\left(-\sqrt{2}\alpha\right). \tag{S.13}$$

In total, for $\alpha \in \mathbb{R}$, we thus have

$$F_x(\alpha) = \begin{cases} \frac{1}{2} \exp\left(\sqrt{2\alpha}\right) & \text{if } \alpha \le 0\\ 1 - \frac{1}{2} \exp\left(-\sqrt{2\alpha}\right) & \text{if } \alpha > 0 \end{cases}$$
(S.14)

Figure 1 visualises $F_x(\alpha)$.

As the figure suggests, there is a unique inverse to $y = F_x(\alpha)$. For $y \leq 1/2$, we have

$$y = \frac{1}{2} \exp\left(\sqrt{2}\alpha\right) \tag{S.15}$$

$$\log(2y) = \sqrt{2}\alpha \tag{S.16}$$

$$\alpha = \frac{1}{\sqrt{2}}\log(2y) \tag{S.17}$$

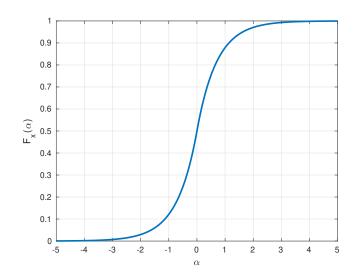


Figure 1: The cumulative distribution function $F_x(\alpha)$ for a Laplace distributed random variable.

For y > 1/2, we have

$$y = 1 - \frac{1}{2} \exp\left(-\sqrt{2\alpha}\right) \tag{S.18}$$

$$-y = -1 + \frac{1}{2} \exp\left(-\sqrt{2}\alpha\right) \tag{S.19}$$

$$1 - y = \frac{1}{2} \exp\left(-\sqrt{2}\alpha\right) \tag{S.20}$$

$$\log(2 - 2y) = -\sqrt{2}\alpha \tag{S.21}$$

$$\alpha = -\frac{1}{\sqrt{2}}\log(2-2y) \tag{S.22}$$

The function $y \mapsto g(y)$ that occurs in the log

$$g(y) = \begin{cases} 2y & \text{if } y \le \frac{1}{2} \\ 2 - 2y & \text{if } y > \frac{1}{2} \end{cases}$$
(S.23)

is shown below and can be written as g(y) = 1 - 2|y - 1/2|.

We thus can write the inverse $F_x^{-1}(y)$ of the cdf $y = F_x(\alpha)$ as

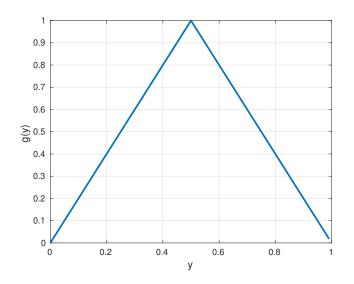
$$F_x^{-1}(y) = -\operatorname{sign}\left(y - \frac{1}{2}\right) \frac{1}{\sqrt{2}} \log\left[1 - 2\left|y - \frac{1}{2}\right|\right].$$
 (S.24)

To generate n iid samples from x, we first generate n iid samples y^i that are uniformly distributed on [0, 1], and then compute for each $F_x^{-1}(y^i)$. The properties of inverse transform sampling guarantee that the x^i ,

$$x^{i} = F_{x}^{-1}(y^{i}) \tag{S.25}$$

are independent and Laplace distributed.

Inverse transform sampling can be used to generate samples from many standard distributions. For example, it allows one to generate Gaussian random variables from uniformly distributed random variables. The method is called the Box-Muller transform, see e.g. https://en.



wikipedia.org/wiki/Box-Muller_transform. How to generate the required samples from the uniform distribution is a research field on its own, see e.g. https://en.wikipedia.org/wiki/Random_number_generation and http://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf.

Exercise 3. Sampling from a restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a model for binary variables $\mathbf{v} = (v_1, \ldots, v_n)^{\top}$ and $\mathbf{h} = (h_1, \ldots, h_m)^{\top}$ which asserts that the joint distribution of (\mathbf{v}, \mathbf{h}) can be described by the probability mass function

$$p(\mathbf{v}, \mathbf{h}) \propto \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right),$$
 (4)

where **W** is a $n \times m$ matrix, and **a** and **b** vectors of size n and m, respectively. Both the v_i and h_i take values in $\{0,1\}$. The v_i are called the "visibles" variables since they are assumed to be observed while the h_i are the hidden variables since it is assumed that we cannot measure them (see the additional practice material from tutorial 2).

Explain how to use Gibbs sampling to generate samples from the marginal $p(\mathbf{v})$,

$$p(\mathbf{v}) = \frac{\sum_{\mathbf{h}} \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right)}{\sum_{\mathbf{h}, \mathbf{v}} \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right)},$$
(5)

for any given values of \mathbf{W} , \mathbf{a} , and \mathbf{b} .

Hint: Use the results in the additional practice sheet of Tutorial 2.

Solution. In order to generate samples $\mathbf{v}^{(k)}$ from $p(\mathbf{v})$ we generate samples $(\mathbf{v}^{(k)}, \mathbf{h}^{(k)})$ from $p(\mathbf{v}, \mathbf{h})$ and then ignore the $\mathbf{h}^{(k)}$.

Gibbs sampling is a MCMC method to produce a sequence of samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ that follow a pdf/pmf $p(\mathbf{x})$ (if the chain is run long enough). Assuming that \mathbf{x} is *d*-dimensional, we generate the next sample $\mathbf{x}^{(k+1)}$ in the sequence from the previous sample $\mathbf{x}^{(k)}$ by:

- 1. picking (randomly) an index $i \in \{1, \ldots, d\}$
- 2. sampling $x_i^{(k+1)}$ from $p(x_i | \mathbf{x}_{i}^{(k)})$ where $\mathbf{x}_{i}^{(k)}$ is vector \mathbf{x} with x_i removed, i.e. $\mathbf{x}_{i}^{(k)} = (x_1^{(k)}, \dots, x_{i-1}^{(k)}, x_{i+1}^{(k)}, \dots, x_d^{(k)})$

3. setting $\mathbf{x}^{(k+1)} = (x_1^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k+1)}, x_{i+1}^{(k)}, \dots, x_d^{(k)}).$

For the RBM, the tuple (\mathbf{h}, \mathbf{v}) corresponds to \mathbf{x} so that a x_i in the above steps can either be a hidden variable or a visible. Hence

$$p(x_i \mid \mathbf{x}_{\setminus i}) = \begin{cases} p(h_i \mid \mathbf{h}_{\setminus i}, \mathbf{v}) & \text{if } x_i \text{ is a hidden variable } h_i \\ p(v_i \mid \mathbf{v}_{\setminus i}, \mathbf{h}) & \text{if } x_i \text{ is a visible variable } v_i \end{cases}$$
(S.26)

 $(\mathbf{h}_{i} \text{ denotes the vector } \mathbf{h} \text{ with element } h_i \text{ removed, and equivalently for } \mathbf{v}_{i})$

To compute the conditionals on the right hand side, we use the following result from Tutorial 2 (additional practice):

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i=1}^{m} p(h_i|\mathbf{v}), \qquad p(h_i = 1|\mathbf{v}) = \frac{1}{1 + \exp\left(-\sum_j v_j W_{ji} - b_i\right)}, \qquad (S.27)$$

$$p(\mathbf{v}|\mathbf{h}) = \prod_{i=1}^{n} p(v_i|\mathbf{h}), \qquad p(v_i = 1|\mathbf{h}) = \frac{1}{1 + \exp\left(-\sum_j W_{ij}h_j - a_i\right)}.$$
 (S.28)

Given the independencies between the hiddens given the visibles and vice versa, we have

$$p(h_i \mid \mathbf{h}_{\setminus i}, \mathbf{v}) = p(h_i \mid \mathbf{v}) \qquad \qquad p(v_i \mid \mathbf{v}_{\setminus i}, \mathbf{h}) = p(v_i \mid \mathbf{h}) \qquad (S.29)$$

so that the expressions for $p(h_i = 1 | \mathbf{v})$ and $p(v_i = 1 | \mathbf{h})$ allow us to implement the Gibbs sampler.

Given the independencies, it makes further sense to sample the **h** and **v** variables in blocks: first we sample all the h_i given **v**, and then all the v_i given the **h** (or vice versa). This is also known as block Gibbs sampling.

In summary, given a sample $(\mathbf{h}^{(k)}, \mathbf{v}^{(k)})$, we thus generate the next sample $(\mathbf{h}^{(k+1)}, \mathbf{v}^{(k+1)})$ in the sequence as follows:

- For all $h_i, i = 1, ..., m$:
 - compute $p_i^h = p(h_i = 1 | \mathbf{v}^{(k)})$
 - sample u_i from a uniform distribution on [0,1] and set $h_i^{(k+1)}$ to 1 if $u_i \leq p_i^h$.
- For all $v_i, i = 1, ..., n$:
 - compute $p_i^v = p(v_i = 1 | \mathbf{h}^{(k+1)})$
 - sample u_i from a uniform distribution on [0,1] and set $v_i^{(k+1)}$ to 1 if $u_i \leq p_i^v$.

As final step, after sampling S pairs $(\mathbf{h}^{(k)}, \mathbf{v}^{(k)})$, $k = 1, \ldots, S$, the set of visibles $\mathbf{v}^{(k)}$ form samples from the marginal $p(\mathbf{v})$.