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The purpose of this additional sheet is to provide more practice and exam preparation material.
N.B. The tutors are not required to work through this material in the tutorial.

Introduction

This exercise focuses on sampling and approximate inference by Markov chain Monte Carlo
(MCMC). This class of methods can be used to obtain samples from a probability distribution,
e.g. a posterior distribution. The samples approximately represent the distribution, as illustrated
in Figure 1, and can be used to approximate expectations. In this exercise, you will write your
own MCMC algorithm, use it to perform inference, and run diagnostics to detect problems.

We denote the density of a zero mean Gaussian with variance σ2 by N (x;µ, σ2), i.e.

N (x;µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
(1)
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(a) True density
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(b) Density represented by 10, 000 samples.

Figure 1: Density and samples from p(x, y) = N (x; 0, 1)N (y; 0, 1).

Brief introduction to MCMC and the Metropolis-Hastings algorithm

Consider a vector of d random variables θ = (θ1, . . . , θd) and some observed data D. In many
cases, we are interested in computing expectations under the posterior distribution p(θ | D), e.g.

Ep(θ|D) [g(θ)] =

∫
g(θ)p(θ | D)dθ (2)

for some function g(θ). If d is small, e.g. d ≤ 3, deterministic numerical methods can be used
to approximate the integral to high accuracy.1 But for higher dimensions, these methods are

1See e.g. https://en.wikipedia.org/wiki/Numerical_integration.
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generally not applicable any more. The expectation, however, can be approximated as a sample
average if we have samples θ(i) from p(θ | D):

Ep(θ|D) [g(θ)] ≈ 1

S

S∑
i=1

g(θ(i)) (3)

In MCMC methods, the samples θ(1), . . . ,θ(S) used in the above approximation are typically not
statistically independent.

Metropolis-Hastings is an MCMC algorithm that generates samples from a distribution p(θ),
where p(θ) can be any distribution (prior or posterior) on the parameters. The algorithm is
iterative and at iteration t, it uses:

• a proposal distribution q(θ;θ(t)), parametrised by the current state of the Markov chain,
i.e. θ(t);

• a function p∗(θ), which is proportional to p(θ). In other words, p∗(θ) is unnormalised2

and the normalised density p(θ) is

p(θ) =
p∗(θ)∫
p∗(θ)dθ

. (4)

Read Section 27.4 in Barber’s book to familiarise yourself with the Metropolis-Hastings algo-
rithm.

For all tasks in this exercise, we work with a Gaussian proposal distribution q(θ;θ(t)), whose
mean is the previous sample in the Markov chain, and whose variance is ε2. That is, at iteration
t of our Metropolis-Hastings algorithm,

q(θ;θ(t−1)) =
d∏

k=1

N (θk; θ
(t−1)
k , ε2). (5)

When used with this proposal distribution, the algorithm is called Random Walk Metropolis-
Hastings algorithm.

Exercise 1. Basic Markov chain Monte Carlo inference

(a) Write a function mh implementing the Metropolis Hasting algorithm, as e.g. given in Al-
gorithm 27.3 in Barber’s book, using the Gaussian proposal distribution in (5) above. The
function should take as arguments

• p_star: a function on θ that is proportional to the density of interest p∗(θ);

• param_init: the initial sample — a value for θ from where the Markov chain starts;

• num_samples: the number S of samples to generate;

• vari: the variance ε2 for the Gaussian proposal distribution q;

and return [θ(1), . . . ,θ(S)] — a list of S samples from p(θ) ∝ p∗(θ). For example:

2We used the notation p̃ in the lecture slides; p∗ is also commonly used, e.g. in Barber’s book.
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def mh(p_star, param_init, num_samples=5000, vari=1.0):
# your code here
return samples

(b) Test your algorithm by sampling 5, 000 samples from p(x, y) = N (x; 0, 1)N (y; 0, 1). Ini-
tialise at (x = 0, y = 0) and use ε2 = 1. Generate a scatter plot of the obtained samples.
The plot should be similar to Figure 1b. Highlight the first 20 samples only. Do these 20
samples alone adequately approximate the true density?

Sample another 5, 000 points from p(x, y) = N (x; 0, 1)N (y; 0, 1) using mh with ε2 = 1, but
this time initialise at (x = 7, y = 7). Generate a scatter plot of the drawn samples and
highlight the first 20 samples. If everything went as expected, your plot probably shows
a “trail” of samples, starting at (x = 7, y = 7) and slowly approaching the region of space
where most of the probability mass is.

In practice, we don’t know where the distribution we wish to sample from has high den-
sity, so we typically initialise the Markov Chain somewhat arbitrarily, or at the maximum
a-posterior sample if available. The samples obtained in the beginning of the chain are
typically discarded, as they are not considered to be representative of the target distri-
bution. This initial period between initialisation and starting to collect samples is called
“warm-up”, or also “burn-in”.

Extended your function mh to include an additional warm-up argument W , which specifies
the number of MCMC steps taken before starting to collect samples. Your function should
still return a list of S samples as in (a).

Exercise 2. Bayesian Poisson regression (optional, not examinable)

Consider a Bayesian Poisson regression model, where outputs yn are generated from a Poisson
distribution of rate exp(αxn + β), where the xn are the inputs (covariates), and α and β the
parameters of the regression model for which we assume a broad Gaussian prior:

α ∼ N (α; 0, 100) (6)
β ∼ N (β; 0, 100) (7)
yn ∼ Poisson(yn; exp(αxn + β)) for n = 1, . . . , N (8)

Poisson(y;λ) denotes the probability mass function of a Poisson random variable with rate λ,

Poisson(y;λ) =
λy

y!
exp(−λ), y ∈ {0, 1, 2, . . .}, λ > 0 (9)

Consider D = {(xn, yn)}Nn=1 where N = 5 and

(x1, . . . , x5) = (−0.50519053,−0.17185719, 0.16147614, 0.49480947, 0.81509851) (10)
(y1, . . . , y5) = (1, 0, 2, 1, 2) (11)

We are interested in computing the posterior density of the parameters (α, β) given the data D
above.

(a) Derive an expression for the unnormalised posterior density of α and β given D, i.e. a
function p∗ of the parameters α and β that is proportional to the posterior density p(α, β |
D), and which can thus be used as target density in the Metropolis Hastings algorithm.
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(b) Implement the derived unnormalised posterior density p∗. If your coding environment
provides an implementation of the above Poisson pmf, you may use it directly rather than
implementing the pmf yourself.

Use the Metropolis Hastings algorithm from Question 1(b) to draw 5, 000 samples from
the posterior density p(α, β | D). Set the hyperparameters of the Metropolis-Hastings
algorithm to:

• param_init = (αinit, βinit) = (0, 0),

• vari = 1, and

• number of warm-up steps W = 1000.

Plot the drawn samples with x-axis α and y-axis β and report the posterior mean of α and
β, as well as their correlation coefficient under the posterior.

Exercise 3. Mixing and convergence of Metropolis-Hasting MCMC

Any MCMC algorithm is an asymptotically exact inference algorithm, meaning that if it is
run forever, it will converge to the desired probability distribution. In practice, we want to
run the algorithm long enough to be able to approximate the posterior adequately. How long
is long enough for the chain to converge varies drastically depending on the algorithm, the
hyperparameters (e.g. the variance vari), and the target posterior distribution. It is impossible
to determine exactly whether the chain has run long enough, but there exist various diagnostics
that can help us determine if we can “trust” the sample-based approximation to the posterior.

A very quick and common way of assessing convergence of the Markov chain is to visually inspect
the trace plots for each parameter. A trace plot shows how the drawn samples evolve through
time, i.e. they are a time-series of the samples generated by the Markov chain. Figure 2 shows
examples of trace plots obtained by running the Metropolis Hastings algorithm for different values
of the hyperparameters vari and param_init. Ideally, the time series covers the whole domain
of the target distribution and it is hard to “see” any structure in it so that predicting values of
future samples from the current one is difficult. If so, the samples are likely independent from
each other and the chain is said to be well “mixed”.

(a) Consider the trace plots in Figure 2: Is the variance vari used in Figure 2b larger or smaller
than the value of vari used in Figure 2a? Is vari used in Figure 2c larger or smaller than
the value used in Figure 2a?

In both cases, explain the behaviour of the trace plots in terms of the workings of the
Metropolis Hastings algorithm and the effect of the variance vari.

(b) In Metropolis-Hastings, and MCMC in general, any sample depends on the previously
generated sample, and hence the algorithm generates samples that are generally statistically
dependent. The effective sample size of a sequence of dependent samples is the number
of independent samples that are, in some sense, equivalent to our number of dependent
samples. A definition of the effective sample size (ESS) is

ESS =
S

1 + 2
∑∞

k=1 ρ(k)
(12)

where S is the number of dependent samples drawn and ρ(k) the correlation coefficient
between two samples in the Markov chain that are k time points apart. We can see that
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(a) variance vari: 1
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(b) Alternative value of vari
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(c) Alternative value of vari

Figure 2: For Question 3(a): Trace plots of the parameter β from Question 2 drawn using
Metropolis-Hastings with different variances of the proposal distribution.
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if the samples are strongly correlated,
∑∞

k=1 ρ(k) is large and the effective sample size is
small. On the other hand, if ρ(k) = 0 for all k, the effective sample size is S.

ESS, as defined above, is the number of independent samples which are needed to obtain a
sample average that has the same variance as the sample average computed from correlated
samples.

To illustrate how correlation between samples is related to a reduction of sample size,
consider two pairs of samples (θ1, θ2) and (ω1, ω2). All variables have variance σ2 and the
same mean µ, but ω1 and ω1 are uncorrelated while the covariance matrix for θ1, θ2 is C,

C = σ2
(

1 ρ
ρ 1

)
, (13)

with ρ > 0. The variance of the average ω̄ = 0.5(ω1 + ω2) is

V (ω̄) =
σ2

2
, (14)

where the 2 in the denominator is the sample size.

Derive an equation for the variance of θ̄ = 0.5(θ1 + θ2) and compute the reduction α of the
sample size when working with the correlated (θ1, θ2). In other words, derive an equation
of α in

V
(
θ̄
)

=
σ2

2/α
. (15)

What is the effective sample size 2/α as ρ→ 1?
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