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Exercise 1. Factor analysis

A friend proposes to improve the factor analysis model by working with correlated latent variables. The
proposed model is

p(h; C) = N (h; 0,C) p(v|h; F,ΨΨΨ, c) = N (v; Fh + c,ΨΨΨ) (1)

where C is some covariance matrix, and the other variables are defined as in the lecture slides. N (x;µµµ,ΣΣΣ)
denotes the pdf of a Gaussian with mean µµµ and covariance matrix ΣΣΣ.

(a) What is marginal distribution of the visibles p(v;θ) where θ stands for the parameters C,F, c,ΨΨΨ?

Solution. The model specifications are equivalent to the following data generating pro-
cess:

h ∼ N (h; 0,C) ε ∼ N (ε; 0,ΨΨΨ) v = Fh + c + ε (S.1)

From the basic result on the distribution of linear transformations of Gaussians on FA and
ICA lecture slide 11 (Barber Result 8.3), it follows that v is Gaussian with mean µµµ and
covariance ΣΣΣ,

µµµ = FE[h]︸︷︷︸
0

+c + E[ε]︸︷︷︸
0

(S.2)

= c (S.3)

ΣΣΣ = FV[h]F> + V[ε] (S.4)

= FCF> + ΨΨΨ. (S.5)

(b) Assume that the singular value decomposition of C is given by

C = EΛE> (2)

where Λ = diag(λ1, . . . , λH) is a diagonal matrix containing the eigenvalues, and E is a orthonormal
matrix containing the corresponding eigenvectors. The matrix square root of C is the matrix M
such that

MM = C, (3)

and we denote it by C1/2. Show that the matrix square root of C equals

C1/2 = Ediag(
√
λ1, . . . ,

√
λD)E>. (4)

Solution. We verify that C1/2C1/2 = C:

C1/2C1/2 = Ediag(
√
λ1, . . . ,

√
λD)E>Ediag(

√
λ1, . . . ,

√
λD)E> (S.6)

= Ediag(
√
λ1, . . . ,

√
λD) I diag(

√
λ1, . . . ,

√
λD)E> (S.7)

= Ediag(
√
λ1, . . . ,

√
λD)diag(

√
λ1, . . . ,

√
λD)E> (S.8)

= Ediag(λ1, . . . , λD)E> (S.9)

= EΛE> (S.10)

= C (S.11)
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(c) Show that the proposed factor analysis model is equivalent to the original factor analysis model

p(h; I) = N (h; 0, I) p(v|h; F̃,ΨΨΨ, c) = N (v; F̃h + c,ΨΨΨ) (5)

with F̃ = FC1/2, so that the extra parameters given by the covariance matrix C are actually
redundant and nothing is gained with the richer parametrisation.

Solution. We verify that the model has the same distribution for the visibles. As before
E[v] = c, and the covariance matrix is

V[v] = F̃IF̃> + ΨΨΨ (S.12)

= FC1/2C1/2F> + ΨΨΨ (S.13)

= FCF> + ΨΨΨ (S.14)

where we have used that C1/2 is a symmetric matrix. This means that the correlation
between the h can be absorbed into the factor matrix F and the set of pdfs defined by the
proposed model equals the set of pdfs of the original factor analysis model.

Another way to see the result is to consider the data generating process and noting that we
can sample h from N (h; 0,C) by first sampling h′ from N (h′; 0, I) and then transforming
the sample by C1/2,

h ∼ N (h; 0,C) ⇐⇒ h = C1/2h′ h′ ∼ N (h′; 0, I). (S.15)

This follows again from the basic properties of linear transformations of Gaussians, i.e.

V(C1/2h′) = C1/2V(h′)(C1/2)> = C1/2IC1/2 = C

and E(C1/2h′) = C1/2E(h′) = 0.

To generate samples from the proposed factor analysis model, we would thus proceed as
follows:

h′ ∼ N (h′; 0, I) ε ∼ N (ε; 0,ΨΨΨ) v = F(C1/2h′) + c + ε (S.16)

But the term
v = F(C1/2h′) + c + ε

can be written as
v = (FC1/2)h′ + c + ε = F̃h′ + c + ε

and since h′ follows N (h′; 0, I), we are back at the original factor analysis model.

Exercise 2. Independent component analysis

(a) Whitening corresponds to linearly transforming a random variable x (or the corresponding data)
so that the resulting random variable z has an identity covariance matrix, i.e.

z = Vx with V[x] = C and V[z] = I.

The matrix V is called the whitening matrix. Note we do not make a distributional assumption on
x, in particular x may or may not be Gaussian.

Given the eigenvalue decomposition C = EΛE>, show that

V = diag(λ
−1/2
1 , . . . , λ

−1/2
d )E> (6)

is a whitening matrix.
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Solution. From V[z] = V[Vx] = VV[x]V>, it follows that

V[z] = VV[x]V> (S.17)

= VCV> (S.18)

= VEΛE>V> (S.19)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )E>EΛE>V> (S.20)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>V> (S.21)

where we have used that E>E = I. Since

V> =
[
diag(λ

−1/2
1 , . . . , λ

−1/2
d )E>

]>
= Ediag(λ

−1/2
1 , . . . , λ

−1/2
d )

we further have

V[z] = diag(λ
−1/2
1 , . . . , λ

−1/2
d )ΛE>Ediag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.22)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )Λdiag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.23)

= diag(λ
−1/2
1 , . . . , λ

−1/2
d )diag(λ1, . . . , λd)diag(λ

−1/2
1 , . . . , λ

−1/2
d ) (S.24)

= I, (S.25)

so that V is indeed a valid whitening matrix. Note that whitening matrices are not unique.
For example,

Ṽ = Ediag(λ
−1/2
1 , . . . , λ

−1/2
d )E>

is also a valid whitening matrix. More generally, if V is a whitening matrix, then RV is
also a whitening matrix when R is an orthonormal matrix. This is because

V[RVx] = RV[Vx]R> = RIR> = I

where we have used that V is a whitening matrix so that Vx has identity covariance
matrix.

(b) Consider the ICA model

v = Ah, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (7)

where the matrix A is invertible and the hi are independent random variables of mean zero and
variance one. Let V be a whitening matrix for v. Show that z = Vv follows the ICA model

z = Ãh, h ∼ ph(h), ph(h) =

D∏
i=1

ph(hi), (8)

where Ã is an orthonormal matrix.

Solution. If v follows the ICA model, we have

z = Vv (S.26)

= VAh (S.27)

= Ãh (S.28)
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with Ã = VA. By the whitening operation, the covariance matrix of z is identity, so that

I = V(z) = ÃV(h)Ã>. (S.29)

By the ICA model, V(h) = I, so that Ã must satisfy

I = ÃÃ>, (S.30)

which means that Ã is orthonormal.

In the original ICA model, the number of parameters is given by the number of elements
of the matrix A, which is D2 if v is D-dimensional. An orthogonal matrix contains D(D−
1)/2 degrees of freedom (see e.g. https://en.wikipedia.org/wiki/Orthogonal_matrix), so
that we can think that whitening “solves half of the ICA problem”. Since whitening
is a relatively simple standard operation, many algorithms, e.g. “fastICA”, first reduce
the complexity of the estimation problem by whitening the data. Moreover, due to the
properties of the orthogonal matrix, the log-likelihood for the ICA model also simplifies for
whitened data: From the lecture slides on ICA, the log-likelihood for ICA model without
whitening is

`(B) =

n∑
i=1

D∑
j=1

log ph(bjvi) + n log |det B| (S.31)

where B = A−1. If we first whiten the data, the log-likelihood becomes

`(B̃) =

n∑
i=1

D∑
j=1

log ph(b̃jzi) + n log | det B̃| (S.32)

where B̃ = Ã−1 = Ã> since A is an orthogonal matrix. This means B̃−1 = Ã = B̃> and
B̃ is an orthogonal matrix. Hence det B̃ = 1, and the log det term is zero. Hence, the
log-likelihood on whitened data simplifies to

`(B̃) =
n∑

i=1

D∑
j=1

log ph(b̃jzi). (S.33)

While the log-likelihood takes a simpler form, the optimisation problem is now a con-
strained optimisation problem: B̃ is constrained to be orthonormal. For further informa-
tion, see e.g. Chapter 9 of Independent Component Analysis by Hyvärinen, Karhunen, and
Oja.
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