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Exercise 1. Score matching for the exponential family

In the lecture, we have derived the objective function J(θ) for score matching,

J(θ) =
1

n

n∑
i=1

m∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
, (1)

where ψj is the partial derivative of the log model-pdf log p(x;θ) with respect to the j-th coordinate (slope)
and ∂jψj its second partial derivative (curvature). The observed data are denoted by x1, . . . ,xn and
x ∈ Rm.

The goal of this exercise is to show that for statistical models of the form

log p(x;θ) =

K∑
k=1

θkFk(x)− logZ(θ), x ∈ Rm, (2)

the score matching objective function becomes a quadratic form, which can be optimised efficiently (see
e.g. Barber Appendix A.5.3).

The set of models above are called the (continuous) exponential family, or also log-linear models because
the models are linear in the parameters θk. Since the exponential family generally includes probability
mass functions as well, the qualifier “continuous” may be used to highlight that we are here considering
continuous random variables only. The functions Fk(x) are assumed to be known; they are the sufficient
statistics (see e.g. Barber Section 8.5).

(a) Denote by K(x) the matrix with elements Kkj(x),

Kkj(x) =
∂Fk(x)

∂xj
, k = 1 . . .K, j = 1 . . .m, (3)

and by H(x) the matrix with elements Hkj(x),

Hkj(x) =
∂2Fk(x)

∂x2j
, k = 1 . . .K, j = 1 . . .m. (4)

Furthermore, let hj(x) = (H1j(x), . . . ,HKj(x))> be the j–th column vector of H(x).

Show that for the continuous exponential family, the score matching objective in Equation (1)
becomes

J(θ) = θ>r +
1

2
θ>Mθ, (5)

where

r =
1

n

n∑
i=1

m∑
j=1

hj(xi), M =
1

n

n∑
i=1

K(xi)K(xi)
>. (6)

Solution. For

log p(x;θ) =

K∑
k=1

θkFk(x)− logZ(θ) (S.1)

1



the first derivative with respect to xj , the j-th element of x, is

ψj(x;θ) =
∂ log p(x;θ)

∂xj
(S.2)

=

K∑
k=1

θk
∂Fk(x)

∂xj
(S.3)

=
K∑
k=1

θkKkj(x). (S.4)

The second derivative is

∂jψj(x;θ) =
∂2 log p(x;θ)

∂x2j
(S.5)

=
K∑
k=1

θk
∂2Fk(x)

∂x2j
(S.6)

=

K∑
k=1

θkHkj(x), (S.7)

which we can write more compactly as

∂jψj(x;θ) = θ>hj(x). (S.8)

The score matching objective in Equation (1) features the sum
∑

j ψj(x;θ)2. The term

ψj(x;θ)2 equals

ψj(x;θ)2 =

[
K∑
k=1

θkKkj(x)

]2
(S.9)

=
K∑
k=1

K∑
k′=1

Kkj(x)Kk′j(x)θkθk′ , (S.10)

so that

m∑
j=1

ψj(x;θ)2 =
m∑
j=1

K∑
k=1

K∑
k′=1

Kkj(x)Kk′j(x)θkθk′ (S.11)

=

K∑
k=1

K∑
k′=1

θkθk′

 m∑
j=1

Kkj(x)Kk′j(x)

 , (S.12)

which can be more compactly expressed using matrix notation. Noting that

m∑
j=1

Kkj(xi)Kk′j(xi)

equals the (k, k′) element of the matrix-matrix product K(xi)K(xi)
>,

m∑
j=1

Kkj(xi)Kk′j(xi) =
[
K(xi)K(xi)

>
]
k,k′

, (S.13)

2



we can write

m∑
j=1

ψj(x;θ)2 =
K∑
k=1

K∑
k′=1

θkθk′
[
K(xi)K(xi)

>
]
k,k′

(S.14)

= θ>K(xi)K(xi)
>θ (S.15)

where we have used that for some matrix A

θ>Aθ =
∑
k,k′

θkθk′ [A]k,k′ (S.16)

where [A]k,k′ is the (k, k′) element of the matrix A.

Inserting the expressions into Equation (1) gives

J(θ) =
1

n

n∑
i=1

m∑
j=1

[
∂jψj(xi;θ) +

1

2
ψj(xi;θ)2

]
(S.17)

=
1

n

n∑
i=1

m∑
j=1

∂jψj(xi;θ) +
1

2

1

n

n∑
i=1

m∑
j=1

ψj(xi;θ)2 (S.18)

=
1

n

n∑
i=1

m∑
j=1

θ>hj(xi) +
1

2

1

n

n∑
i=1

θ>K(xi)K(xi)
>θ (S.19)

= θ>

 1

n

n∑
i=1

m∑
j=1

hj(xi)

+
1

2
θ>

[
1

n

n∑
i=1

K(xi)K(xi)
>

]
θ (S.20)

= θ>r +
1

2
θ>Mθ, (S.21)

which is the desired result.

(b) The pdf of a zero mean Gaussian parametrised by the variance σ2 is

p(x;σ2) =
1√

2πσ2
exp

(
− x2

2σ2

)
, x ∈ R. (7)

The (multivariate) Gaussian is a member of the exponential family. By comparison with Equation
(2), we can re-parametrise the statistical model {p(x;σ2)}σ2 and work with

p(x; θ) =
1

Z(θ)
exp

(
θx2
)
, θ < 0, x ∈ R, (8)

instead. The two parametrisations are related by θ = −1/(2σ2). Using the previous result on

the (continuous) exponential family, determine the score matching estimate θ̂, and show that the
corresponding σ̂2 is the same as the maximum likelihood estimate. This result is noteworthy because
unlike in maximum likelihood estimation, score matching does not need the partition function Z(θ)
for the estimation.

Solution. By comparison with Equation (2), the sufficient statistics F (x) is x2.

We first determine the score matching objective function. For that, we need to determine
the quantities r and M in Equation (6). Here, both r and M are scalars, and so are the
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matrices K and H that define r and M. By their definitions, we obtain

K(x) =
∂F (x)

∂x
= 2x (S.22)

H(x) =
∂2F (x)

∂x2
= 2 (S.23)

r = 2 (S.24)

M =
1

n

n∑
i=1

K(xi)
2 (S.25)

= 4m2 (S.26)

where m2 denotes the second empirical moment,

m2 =
1

n

n∑
i=1

x2i . (S.27)

With Equation (1), the score matching objective thus is

J(θ) = 2θ +
1

2
4m2θ

2 (S.28)

= 2θ + 2m2θ
2 (S.29)

A necessary condition for the minimiser to satisfy is

∂J(θ)

∂θ
= 2 + 4θm2 (S.30)

= 0 (S.31)

The only parameter value that satisfies the condition is

θ̂ = − 1

2m2
. (S.32)

The second derivative of J(θ) is

∂2J(θ)

θ2
= m2, (S.33)

which is positive (as long as all data points are non-zero). Hence θ̂ is a minimiser.

From the relation θ = −1/(2σ2), we obtain that the score matching estimate of the variance
σ2 is

σ̂2 = − 1

2θ̂
= m2. (S.34)

We can obtain the score matching estimate σ̂2 from θ̂ in this manner for the same reason
that we were able to work with transformed parameters in maximum likelihood estimation.

For zero mean Gaussians, the second moment m2 is the maximum likelihood estimate
of the variance, which shows that the score matching and maximum likelihood estimate
are here the same. While the two methods generally yield different estimates, the result
also holds for multivariate Gaussians where the score matching estimates also equal the
maximum likelihood estimates (see the original article on score matching http://jmlr.org/

papers/volume6/hyvarinen05a/hyvarinen05a.pdf ).
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