These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the tutorial sheet.

Note the difference between the notations $p(\mathbf{x} ; \boldsymbol{\theta})$ and $p(\mathbf{x} \mid \boldsymbol{\theta})$. The former is a pdf/pmf of a random variable \mathbf{x} that is parametrised by a vector of numbers (parameters) $\boldsymbol{\theta}$. The latter is a conditional $\mathrm{pdf} / \mathrm{pmf}$ of a random variable \mathbf{x} given information of another random variable $\boldsymbol{\theta}$.

Likelihood $L(\boldsymbol{\theta})$ - The chance that the model generates data like the observed one when using parameter configuration $\boldsymbol{\theta}$. For iid data $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$, the likelihood of the parameters $\boldsymbol{\theta}$ is

$$
\begin{equation*}
L(\boldsymbol{\theta})=p(\mathcal{D} ; \boldsymbol{\theta})=\prod_{i=1}^{n} p\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right) \tag{1}
\end{equation*}
$$

Prior $p(\boldsymbol{\theta})-\quad$ Beliefs about the plausibility of parameter values before we see any data.

Posterior $p(\boldsymbol{\theta} \mid \mathcal{D})$ — Beliefs about the parameters after having seen the data. This is proportional to the likelihood function $L(\boldsymbol{\theta})$ weighted by our prior beliefs about the parameters $p(\boldsymbol{\theta})$

$$
\begin{equation*}
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto L(\boldsymbol{\theta}) p(\boldsymbol{\theta}) \tag{2}
\end{equation*}
$$

Parametric statistical model - A set of pdfs/pmfs indexed by parameters $\boldsymbol{\theta}$,

$$
\begin{equation*}
\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}} \tag{3}
\end{equation*}
$$

- Parameter estimation Using \mathcal{D} to pick the "best" parameter value $\hat{\boldsymbol{\theta}}$ among the possible $\boldsymbol{\theta}$ - i.e. pick the "best" pdf/pmf $p(\mathbf{x} ; \hat{\boldsymbol{\theta}})$ from the set of $\mathrm{pdfs} / \mathrm{pmfs}\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$,

Bayesian model - Considers $p(\mathbf{x} ; \boldsymbol{\theta})$ to be conditional $p(\mathbf{x} \mid \boldsymbol{\theta})$. Models the distribution of the parameters $\boldsymbol{\theta}$, as well as the random variable \mathbf{x}

$$
\begin{equation*}
p(\mathbf{x}, \boldsymbol{\theta})=p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \tag{4}
\end{equation*}
$$

- Bayesian inference Determine the plausibility of all possible $\boldsymbol{\theta}$ in light of the observed data - i.e. compute the posterior $p(\boldsymbol{\theta} \mid \mathcal{D})$.

Maximum likelihood - The parameters $\hat{\boldsymbol{\theta}}$ that give the largest likelihood (or log-likelihood)

$$
\begin{equation*}
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ell(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} L(\boldsymbol{\theta}) \tag{5}
\end{equation*}
$$

Sometimes this can be computed directly (as in the tutorials). However, numerical methods are often needed for this optimisation problem, which leads to local optima.

