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Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian model?

Solution. For iid data, the likelihood function is

L(θ) =

n∏
i

p(xi;θ) (S.1)

=

n∏
i

1√
2πσ2

exp

[
−(xi − µ)2

2σ2

]
(S.2)

=
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
. (S.3)

(b) What is the log-likelihood function `(θ)?

Solution. Taking the log of the likelihood function gives

`(θ) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (S.4)

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are the
sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Solution. Since the logarithm is strictly monotonically increasing, the maximiser of the
log-likelihood equals the maximiser of the likelihood. It is easier to take derivatives for the
log-likelihood function than for the likelihood function so that the maximum likelihood
estimate is typically determined using the log-likelihood.

Given the algebraic expression of `(θ), it is simpler to work with the variance v = σ2 rather
than the standard deviation. (In the lecture notes, we used the variable η to denote the
transformed parameters. We could have written η = σ2, but v is a more natural notation
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for the variance.) Since σ > 0 the function v = g(σ) = σ2 is invertible, and the invariance
of the MLE to re-parametrisation guarantees that

σ̂ =
√
v̂.

We now thus maximise the function J(µ, v),

J(µ, v) = −n
2

log(2πv)− 1

2v

n∑
i=1

(xi − µ)2 (S.5)

with respect to µ and v.

Taking partial derivatives gives

∂J

∂µ
=

1

v

n∑
i=1

(xi − µ) (S.6)

=
1

v

n∑
i=1

xi −
n

v
µ (S.7)

∂J

∂v
= −n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 (S.8)

A necessary condition for optimality is that the partial derivatives are zero. We thus
obtain the conditions

1

v

n∑
i=1

(xi − µ) = 0 (S.9)

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 = 0 (S.10)

From the first condition it follows that

µ̂ =
1

n

n∑
i=1

xi (S.11)

The second condition thus becomes

−n
2

1

v
+

1

2v2

n∑
i=1

(xi − µ̂)2 = 0 (multiply with v2 and rearrange) (S.12)

1

2

n∑
i=1

(xi − µ̂)2 =
n

2
v, (S.13)

and hence

v̂ =
1

n

n∑
i=1

(xi − µ̂)2, (S.14)

We now check that this solution corresponds to a maximum by computing the Hessian
matrix

H(µ, v) =

(
∂2J
∂µ2

∂2J
∂µ∂v

∂2J
∂µ∂v

∂2J
∂v2

)
(S.15)
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If the Hessian negative definite at (µ̂, v̂), the point is a (local) maximum. Since we only
have one critical point, (µ̂, v̂), the local maximum is also a global maximum. Taking second
derivatives gives

H(µ, v) =

(
−n
v − 1

v2
∑n

i=1(xi − µ)
− 1
v2
∑n

i=1(xi − µ) n
2

1
v2
− 1

v3
∑n

i=1(xi − µ)2

)
. (S.16)

Substituting the values for (µ̂, v̂) gives

H(µ̂, v̂) =

(
−n
v̂ 0

0 −n
2

1
v̂2

)
, (S.17)

which is negative definite. Note that the the (negative) curvature increases with n, which
means that J(µ, v), and hence the log-likelihood becomes more and more peaked as the
number of data points n increases.

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ2

0

exp

[
− (µ− µ0)2

2σ2
0

]
(3)

where σ2 is a fixed known quantity.
Hint: You will need the result from Tutorial 5 for taking the product of Gaussians.

Solution. Recall the following result from Tutorial 5:

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (S.18)

where

N (x;µ, σ2) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
(S.19)

σ23 =

(
1

σ21
+

1

σ22

)−1

=
σ21σ

2
2

σ21 + σ22
(S.20)

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (S.21)

We can further re-use the expression for the likelihood L(µ) from Exercise 1 in the main tutorial
sheet,

L(µ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
, (S.22)
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which we can write as

L(µ) ∝ exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
(S.23)

∝ exp

[
− 1

2σ2

n∑
i=1

(x2i − 2µxi + µ2)

]
(S.24)

∝ exp

[
− 1

2σ2

(
−2µ

n∑
i=1

xi + nµ2

)]
(S.25)

∝ exp

[
− 1

2σ2
(
−2nµx̄+ nµ2

)]
(S.26)

∝ exp
[
− n

2σ2
(µ− x̄)2

]
(S.27)

∝ N (µ; x̄, σ2/n). (S.28)

The posterior is

p(µ|D) ∝ L(θ)p(µ;µ0, σ
2
0) (S.29)

∝ N (µ; x̄, σ2/n)N (µ;µ0, σ
2
0) (S.30)

so that with (S.18), we have

p(µ|D) ∝ N (µ;µn, σ
2
n) (S.31)

σ2n =

(
1

σ2/n
+

1

σ20

)−1

(S.32)

=
σ20σ

2/n

σ20 + σ2/n
(S.33)

µn = σ2n

(
x̄

σ2/n
+
µ0
σ20

)
(S.34)

=
1

σ20 + σ2/n

(
σ20x̄+ (σ2/n)µ0

)
(S.35)

=
σ20

σ20 + σ2/n
x̄+

σ2/n

σ20 + σ2/n
µ0 (S.36)

which are the expressions given in the lecture slides. As n increases, σ2/n goes to zero so that
σ2n → 0 and µn → x̄. This means that with an increasing amount of data, the posterior of the
mean tends to be concentrated around the maximum likelihood estimate x̄.

From (S.21), we also have that

µn = µ0 +
σ20

σ2/n+ σ20
(x̄− µ0), (S.37)

which shows more clearly that the value of µn lies on a line with end-points µ0 (for n = 0) and
x̄ (for n→∞). As the amount of data increases, µn moves form the mean under the prior, µ0,
to the average of the observed sample, that is the MLE x̄.

4


