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Exercise 1. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions.
For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability
density function of a Gaussian random variable x with mean µ and variance σ2 by N (x|µ, σ2),

N (x|µ, σ2) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
. (1)

The transition and emission distributions are assumed to be

p(hs|hs−1) = N (hs|Ashs−1, B2
s ) (2)

p(vs|hs) = N (vs|Cshs, D2
s). (3)

The distribution p(h1) is assumed Gaussian with known parameters. The As, Bs, Cs, Ds are also assumed
known.

(a) Show that hs and vs as defined in the update and observation equations

hs = Ashs−1 +Bsξs (4)

vs = Cshs +Dsηs (5)

follow the conditional distributions in (2) and (3). The random variables ξs and ηs are independent
from the other variables in the model and follow a standard normal Gaussian distribution, e.g.
ξs ∼ N (ξs|0, 1).
Hint: For two constants c1 and c2, y = c1 + c2x is Gaussian if x is Gaussian. In other words, an
affine transformation of a Gaussian is Gaussian.

The equations mean that hs is obtained by scaling hs−1 and by adding noise with variance B2
s .

The observed value vs is obtained by scaling the hidden hs and by corrupting it with Gaussian
observation noise of variance D2

s .

Solution. By assumption, ξs is Gaussian. Since we condition on hs−1, Ashs−1 in (4) is
a constant, and since Bs is a constant too, hs is Gaussian.

What we have to show next is that (4) defines the same conditional mean and variance as
the conditional Gaussian in (2): The conditional expectation of hs given hs−1 is

E(hs|hs−1) = Ashs−1 + E(Bsξs) (since we condition on hs−1) (S.1)

= Ashs−1 +BsE(ξs) (by linearity of expectation) (S.2)

= Ashs−1 (since ξs has zero mean) (S.3)

The conditional variance of hs given hs−1 is

V(hs|hs−1) = V(Bsξs) (since we condition on hs−1) (S.4)

= B2
sV(ξs) (by properties of the variance) (S.5)

= B2
s (since ξs has variance one) (S.6)

We see that the conditional mean and variance of hs given hs−1 match those in (2). And
since hs given hs−1 is Gaussian as argued above, the result follows.
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Exactly the same reasoning also applies to the case of (5). Conditional on hs, vs is Gaussian
because it is an affine transformation of a Gaussian. The conditional mean of vs given hs
is:

E(vs|hs) = Cshs + E(Dsηs) (since we condition on hs) (S.7)

= Cshs +DsE(ηs) (by linearity of expectation) (S.8)

= Cshs (since ηs has zero mean) (S.9)

The conditional variance of vs given hs is

V(vs|hs) = V(Dsηs) (since we condition on hs) (S.10)

= D2
sV(ηs) (by properties of the variance) (S.11)

= D2
s (since ηs has variance one) (S.12)

Hence, conditional on hs, vs is Gaussian with mean and variance as in (3).

(b) Show that ∫
N (x|µ, σ2)N (y|Ax,B2)dx ∝ N (y|Aµ,A2σ2 +B2) (6)

Hint: While this result can be obtained by direct integration, an approach that avoids this is as

follows: First note that N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and y. We

can thus consider the integral to correspond to the computation of the marginal of y from the joint.

Using the equivalence of Equations (2)-(3) and (4)-(5), and the fact that the weighted sum of two

Gaussian random variables is a Gaussian random variable then allows one to obtain the result.

Solution. We follow the procedure outlined above. The two Gaussian densities corre-
spond to the equations

x = µ+ σξ (S.13)

y = Ax+Bη (S.14)

where ξ and η are independent standard normal random variables. The mean of y is

E(y) = AE(x) +BE(η) (S.15)

= Aµ (S.16)

where we have use the linearity of expectation and E(η) = 0. The variance of y is

V(y) = V(Ax) + V(Bη) (since x and η are independent) (S.17)

= A2V(x) +B2V(η) (by properties of the variance) (S.18)

= A2σ2 +B2 (S.19)

Since y is the (weighted) sum of two Gaussians, it is Gaussian itself, and hence its distri-
bution is completely defined by its mean and variance, so that

y ∼ N (y|Aµ,A2σ2 +B2). (S.20)

Now, the product N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and y, so
that the integral can be considered to correspond to the marginalisation of x, and hence
its result is proportional to the density of y, which is N (y|Aµ,A2σ2 +B2).
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(c) Show that
N (x|m1, σ

2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3) (7)

where

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1
=

σ2
1σ

2
2

σ2
1 + σ2

2

(8)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (9)

Hint: Work in the negative log domain.

Solution. We show the result using a classical technique called “completing the square”,
see e.g. https://en.wikipedia.org/wiki/Completing_the_square.

We work in the (negative) log-domain and use that

− log
[
N (x|m,σ2)

]
=

(x−m)2

2σ2
+ const (S.21)

=
x2

2σ2
− xm

σ2
+
m2

2σ2
+ const (S.22)

=
x2

2σ2
− xm

σ2
+ const (S.23)

where const indicates terms not depending on x. We thus obtain

− log
[
N (x|m1, σ

2
1)N (x|m2, σ

2
2)
]

= − log
[
N (x|m1, σ

2
1)
]
− log

[
N (x|m2, σ

2
2)
]

(S.24)

=
(x−m1)

2

2σ21
+

(x−m2)
2

2σ22
+ const (S.25)

=
x2

2σ21
− xm1

σ21
+

x2

2σ22
− xm2

σ22
+ const (S.26)

=
x2

2

(
1

σ21
+

1

σ22

)
− x

(
m1

σ21
+
m2

σ22

)
+ const (S.27)

=
x2

2σ23
− x

σ23
σ23

(
m1

σ21
+
m2

σ22

)
+ const, (S.28)

where

1

σ23
=

1

σ21
+

1

σ22
. (S.29)

Comparison with (S.23) shows that we can further write

x2

2σ23
− x

σ23
σ23

(
m1

σ21
+
m2

σ22

)
=

(x−m3)
2

2σ23
+ const (S.30)

where

m3 = σ23

(
m1

σ21
+
m2

σ22

)
(S.31)

so that

− log
[
N (x|m1, σ

2
1)N (x|m2, σ

2
2)
]

=
(x−m3)

2

2σ23
+ const (S.32)
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and hence

N (x|m1, σ
2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3). (S.33)

Note that the identity

m3 = σ23

(
m1

σ21
+
m2

σ22

)
= m1 +

σ21
σ21 + σ22

(m2 −m1) (S.34)

is obtained as follows

σ23

(
m1

σ21
+
m2

σ22

)
=

σ21σ
2
2

σ21 + σ22

(
m1

σ21
+
m2

σ22

)
(S.35)

= m1
σ22

σ21 + σ22
+m2

σ21
σ21 + σ22

(S.36)

= m1

(
1− σ21

σ21 + σ22

)
+m2

σ21
σ21 + σ22

(S.37)

= m1 +
σ21

σ21 + σ22
(m2 −m1) (S.38)

(d) In the lecture, we have seen that p(ht|v1:t) ∝ α(ht) where α(ht) can be computed recursively via the
“alpha-recursion”

α(h1) = p(h1) · p(v1|h1) α(hs) = p(vs|hs)
∑
hs−1

p(hs|hs−1)α(hs−1). (10)

We have also seen that the alpha-recursion corresponds to sum-product message passing with

µhs→φs+1
(hs) = α(hs) µφs→hs

(hs) =
∑
hs−1

p(hs|hs−1)α(hs−1) (11)

and that µφs→hs
(hs) ∝ p(hs|v1:s−1). For continuous random variables, the sum above becomes an

integral so that

α(hs) = p(vs|hs)µφs→hs
(hs) µφs→hs

(hs) =

∫
p(hs|hs−1)α(hs−1)dhs−1. (12)

For a Gaussian prior distribution for h1 and Gaussian emission probability p(v1|h1), α(h1) =
p(h1) · p(v1|h1) ∝ p(h1|v1) is proportional to a Gaussian. We denote its mean by µ1 and its
variance by σ2

1 so that
α(h1) ∝ N (h1|µ1, σ

2
1). (13)

Assuming α(hs−1) ∝ N (hs−1|µs−1, σ2
s−1) (which holds for s = 2), use Equation (6) to show that

µφs→hs
(hs) ∝ N (hs|Asµs−1, Ps) (14)

where

Ps = A2
sσ

2
s−1 +B2

s . (15)

Solution. We can set α(hs−1) ∝ N (hs−1|µs−1, σ2s−1). Since p(hs|hs−1) is Gaussian, see
Equation (2), Equation (12) becomes

µφs→hs(hs) =

∫
N (hs|Ashs−1, B2

s )N (hs−1|µs−1, σ2s−1)dhs−1. (S.39)
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Equation (6) with x ≡ hs−1 and y ≡ hs yields the desired result,

µφs→hs(hs) = N (hs|Asµs−1, A2
sσ

2
s−1 +B2

s ). (S.40)

With α(hs−1) ∝ p(hs−1|v1:s−1) and µφs→hs(hs) ∝ p(hs|v1:s−1), we can understand the
equation as follows: To compute the predictive mean of hs given v1:s−1, we forward prop-
agate the mean of hs−1|v1:s−1 using the update equation (4). This gives the mean term
Asµs−1. Since hs−1|v1:s−1 has variance σ2s−1, the variance of hs|v1:s−1 is given by A2

sσ
2
s−1

plus an additional term, B2
s , due to the noise in the forward propagation. This gives the

variance term A2
sσ

2
s−1 + B2

s . In the lecture, it was pointed out that µφs→hs(hs) is called
the “prediction” step in the alpha-recursion. Indeed, we here compute the predictive
distribution of hs given v1:s−1, which is the Gaussian in Equation (S.40).

(e) Use Equation (7) to show that

α(hs) ∝ N
(
hs|µs, σ2

s

)
(16)

where

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (17)

σ2
s =

PsD
2
s

PsC2
s +D2

s

(18)

Solution. Having computed µφs→hs(hs), the final step in the alpha-recursion is

α(hs) = p(vs|hs)µφs→hs(hs) (S.41)

With Equation (3) we obtain

α(hs) ∝ N (vs|Cshs, D2
s)N (hs|Asµs−1, Ps). (S.42)

We further note that

N (vs|Cshs, D2
s) ∝ N

(
hs|C−1s vs,

D2
s

C2
s

)
(S.43)

so that we can apply Equation (7) (with m1 = Aµs−1, σ
2
1 = Ps)

α(hs) ∝ N
(
hs|C−1s vs,

D2
s

C2
s

)
N (hs|Asµs−1, Ps) (S.44)

∝ N
(
hs, µs, σ

2
s

)
(S.45)

with

µs = Asµs−1 +
Ps

Ps + D2
s

C2
s

(
C−1s vs −Asµs−1

)
(S.46)

= Asµs−1 +
PsC

2
s

C2
sPs +D2

s

(
C−1s vs −Asµs−1

)
(S.47)

= Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (S.48)

σ2s =
Ps

D2
s

C2
s

Ps + D2
s

C2
s

(S.49)

=
PsD

2
s

PsC2
s +D2

s

(S.50)

(S.51)
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(f) Show that α(hs) can be re-written as

α(hs) ∝ N
(
hs|µs, σ2

s

)
(19)

where

µs = Asµs−1 +Ks (vs − CsAsµs−1) (20)

σ2
s = (1−KsCs)Ps (21)

Ks =
PsCs

C2
sPs +D2

s

(22)

These are the Kalman filter equations and Ks is called the Kalman filter gain.

Solution. We start from

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) , (S.52)

and see that
PsCs

C2
sPs +D2

s

= Ks (S.53)

so that

µs = Asµs−1 +Ks (vs − CsAsµs−1) . (S.54)

For the variance σ2s , we have

σ2s =
PsD

2
s

PsC2
s +D2

s

(S.55)

=
D2
s

PsC2
s +D2

s

Ps (S.56)

=

(
1− PsC

2
s

PsC2
s +D2

s

)
Ps (S.57)

= (1−KsCs)Ps, (S.58)

which is the desired result.

The filtering result generalises to vector valued latents and visibles where the transition
and emission distributions in (2) and (3) become

p(hs|hs−1) = N (hs|Ahs−1,ΣΣΣ
h), (S.59)

p(vs|hs) = N (vs|Cshs,ΣΣΣ
v), (S.60)

where N () denotes multivariate Gaussian pdfs, e.g.

N (vs|Cshs,ΣΣΣ
v) =

1

|det(2πΣΣΣv)|1/2
exp

(
−1

2
(vs −Cshs)

>(ΣΣΣv)−1(vs −Cshs)

)
. (S.61)

We then have

p(ht|v1:t) = N (ht|µµµt,ΣΣΣt) (S.62)
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where the posterior mean and variance are recursively computed as

µµµs = Asµµµs−1 + Ks(vs −CsAsµµµs−1) (S.63)

ΣΣΣs = (I−KsCs)Ps (S.64)

Ps = AsΣΣΣs−1A
>
s + ΣΣΣh (S.65)

Ks = PsC
>
s

(
CsPsC

>
s + ΣΣΣv

)−1
(S.66)

and initialised with µµµ1 and ΣΣΣ1 equal to the mean and variance of p(h1|v1). The matrix
Ks is then called the Kalman gain matrix.

The Kalman filter is widely applicable, see e.g. https://en.wikipedia.org/wiki/Kalman_
filter, and has played a role in historic events such as the moon landing, see e.g.
http://ieeexplore.ieee.org/document/5466132/

An example of the application of the Kalman filter to tracking is shown in Figure 1.

Figure 1: Kalman filtering for tracking of a moving object. The blue points indicate the
true positions of the object in a two-dimensional space at successive time steps, the green
points denote noisy measurements of the positions, and the red crosses indicate the means of
the inferred posterior distributions of the positions obtained by running the Kalman filtering
equations. The covariances of the inferred positions are indicated by the red ellipses, which
correspond to contours having one standard deviation. (Bishop, Figure 13.22)

(g) Explain Equation (20) in non-technical terms. What happens if the variance D2
s of the observation

noise goes to zero?

Solution. We have already seen that Asµs−1 is the predictive mean of hs given v1:s−1.
The term CsAsµs−1 is thus the predictive mean of vs given the observations so far, v1:s−1.
The difference vs−CsAsµs−1 is thus the prediction error of the observable. Since α(hs) is
proportional to p(hs|v1:s) and µs its mean, we thus see that the posterior mean of hs|v1:s
equals the posterior mean of hs|v1:s−1, Asµs−1, updated by the prediction error of the
observable weighted by the Kalman gain.
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For D2
s → 0, Ks → C−1s and

µs = Asµs−1 +Ks (vs − CsAsµs−1) (S.67)

= Asµs−1 + C−1s (vs − CsAsµs−1) (S.68)

= Asµs−1 + C−1s vs −Asµs−1 (S.69)

= C−1s vs, (S.70)

so that the posterior mean of p(hs|v1:s) is obtained by inverting the observation equation.
Moreover, σ2s → 0, so that with zero observation noise, the value of hs is known precisely.
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