Exercise 1. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions. For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability density function of a Gaussian random variable x with mean μ and variance σ^{2} by $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$,

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \tag{1}
\end{equation*}
$$

The transition and emission distributions are assumed to be

$$
\begin{align*}
p\left(h_{s} \mid h_{s-1}\right) & =\mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \tag{2}\\
p\left(v_{s} \mid h_{s}\right) & =\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) . \tag{3}
\end{align*}
$$

The distribution $p\left(h_{1}\right)$ is assumed Gaussian with known parameters. The $A_{s}, B_{s}, C_{s}, D_{s}$ are also assumed known.
(a) Show that h_{s} and v_{s} as defined in the update and observation equations

$$
\begin{align*}
h_{s} & =A_{s} h_{s-1}+B_{s} \xi_{s} \tag{4}\\
v_{s} & =C_{s} h_{s}+D_{s} \eta_{s} \tag{5}
\end{align*}
$$

follow the conditional distributions in (2) and (3). The random variables ξ_{s} and η_{s} are independent from the other variables in the model and follow a standard normal Gaussian distribution, e.g. $\xi_{s} \sim \mathcal{N}\left(\xi_{s} \mid 0,1\right)$.
Hint: For two constants c_{1} and $c_{2}, y=c_{1}+c_{2} x$ is Gaussian if x is Gaussian. In other words, an affine transformation of a Gaussian is Gaussian.
The equations mean that h_{s} is obtained by scaling h_{s-1} and by adding noise with variance B_{s}^{2}. The observed value v_{s} is obtained by scaling the hidden h_{s} and by corrupting it with Gaussian observation noise of variance D_{s}^{2}.

Solution. By assumption, ξ_{s} is Gaussian. Since we condition on $h_{s-1}, A_{s} h_{s-1}$ in (4) is a constant, and since B_{s} is a constant too, h_{s} is Gaussian.
What we have to show next is that (4) defines the same conditional mean and variance as the conditional Gaussian in (2): The conditional expectation of h_{s} given h_{s-1} is

$$
\begin{align*}
\mathbb{E}\left(h_{s} \mid h_{s-1}\right) & =A_{s} h_{s-1}+\mathbb{E}\left(B_{s} \xi_{s}\right) & & \text { (since we condition on } \left.h_{s-1}\right) \tag{S.1}\\
& =A_{s} h_{s-1}+B_{s} \mathbb{E}\left(\xi_{s}\right) & & \text { (by linearity of expectation) } \tag{S.2}\\
& =A_{s} h_{s-1} & & \text { (since } \xi_{s} \text { has zero mean) } \tag{S.3}
\end{align*}
$$

The conditional variance of h_{s} given h_{s-1} is

$$
\begin{align*}
\mathbb{V}\left(h_{s} \mid h_{s-1}\right) & =\mathbb{V}\left(B_{s} \xi_{s}\right) & & \text { (since we condition on } \left.h_{s-1}\right) \tag{S.4}\\
& =B_{s}^{2} \mathbb{V}\left(\xi_{s}\right) & & \text { (by properties of the variance) } \tag{S.5}\\
& =B_{s}^{2} & & \text { (since } \xi_{s} \text { has variance one) } \tag{S.6}
\end{align*}
$$

We see that the conditional mean and variance of h_{s} given h_{s-1} match those in (2). And since h_{s} given h_{s-1} is Gaussian as argued above, the result follows.

Exactly the same reasoning also applies to the case of (5). Conditional on h_{s}, v_{s} is Gaussian because it is an affine transformation of a Gaussian. The conditional mean of v_{s} given h_{s} is:

$$
\begin{align*}
\mathbb{E}\left(v_{s} \mid h_{s}\right) & =C_{s} h_{s}+\mathbb{E}\left(D_{s} \eta_{s}\right) & & \left(\text { since we condition on } h_{s}\right) \tag{S.7}\\
& =C_{s} h_{s}+D_{s} \mathbb{E}\left(\eta_{s}\right) & & \text { (by linearity of expectation) } \tag{S.8}\\
& =C_{s} h_{s} & & \left(\text { since } \eta_{s}\right. \text { has zero mean) } \tag{S.9}
\end{align*}
$$

The conditional variance of v_{s} given h_{s} is

$$
\begin{align*}
\mathbb{V}\left(v_{s} \mid h_{s}\right) & =\mathbb{V}\left(D_{s} \eta_{s}\right) & & \text { (since we condition on } \left.h_{s}\right) \tag{S.10}\\
& =D_{s}^{2} \mathbb{V}\left(\eta_{s}\right) & & \text { (by properties of the variance) } \tag{S.11}\\
& =D_{s}^{2} & & \text { (since } \eta_{s} \text { has variance one) } \tag{S.12}
\end{align*}
$$

Hence, conditional on h_{s}, v_{s} is Gaussian with mean and variance as in (3).
(b) Show that

$$
\begin{equation*}
\int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right) \mathrm{d} x \propto \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{6}
\end{equation*}
$$

Hint: While this result can be obtained by direct integration, an approach that avoids this is as follows: First note that $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y. We can thus consider the integral to correspond to the computation of the marginal of y from the joint. Using the equivalence of Equations (2)-(3) and (4)-(5), and the fact that the weighted sum of two Gaussian random variables is a Gaussian random variable then allows one to obtain the result.

Solution. We follow the procedure outlined above. The two Gaussian densities correspond to the equations

$$
\begin{align*}
& x=\mu+\sigma \xi \tag{S.13}\\
& y=A x+B \eta \tag{S.14}
\end{align*}
$$

where ξ and η are independent standard normal random variables. The mean of y is

$$
\begin{align*}
\mathbb{E}(y) & =A \mathbb{E}(x)+B \mathbb{E}(\eta) \tag{S.15}\\
& =A \mu \tag{S.16}
\end{align*}
$$

where we have use the linearity of expectation and $\mathbb{E}(\eta)=0$. The variance of y is

$$
\begin{align*}
\mathbb{V}(y) & =\mathbb{V}(A x)+\mathbb{V}(B \eta) \quad \text { (since } x \text { and } \eta \text { are independent) } \tag{S.17}\\
& =A^{2} \mathbb{V}(x)+B^{2} \mathbb{V}(\eta) \quad \text { (by properties of the variance) } \tag{S.18}\\
& =A^{2} \sigma^{2}+B^{2} \tag{S.19}
\end{align*}
$$

Since y is the (weighted) sum of two Gaussians, it is Gaussian itself, and hence its distribution is completely defined by its mean and variance, so that

$$
\begin{equation*}
y \sim \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{S.20}
\end{equation*}
$$

Now, the product $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y, so that the integral can be considered to correspond to the marginalisation of x, and hence its result is proportional to the density of y, which is $\mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right)$.
(c) Show that

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma_{3}^{2} & =\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-1}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{8}\\
m_{3} & =\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{9}
\end{align*}
$$

Hint: Work in the negative log domain.

Solution. We show the result using a classical technique called "completing the square", see e.g. https://en.wikipedia.org/wiki/Completing_the_square.
We work in the (negative) log-domain and use that

$$
\begin{align*}
-\log \left[\mathcal{N}\left(x \mid m, \sigma^{2}\right)\right] & =\frac{(x-m)^{2}}{2 \sigma^{2}}+\mathrm{const} \tag{S.21}\\
& =\frac{x^{2}}{2 \sigma^{2}}-x \frac{m}{\sigma^{2}}+\frac{m^{2}}{2 \sigma^{2}}+\mathrm{const} \tag{S.22}\\
& =\frac{x^{2}}{2 \sigma^{2}}-x \frac{m}{\sigma^{2}}+\mathrm{const} \tag{S.23}
\end{align*}
$$

where const indicates terms not depending on x. We thus obtain

$$
\begin{align*}
-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right] & =-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right)\right]-\log \left[\mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right] \tag{S.24}\\
& =\frac{\left(x-m_{1}\right)^{2}}{2 \sigma_{1}^{2}}+\frac{\left(x-m_{2}\right)^{2}}{2 \sigma_{2}^{2}}+\mathrm{const} \tag{S.25}\\
& =\frac{x^{2}}{2 \sigma_{1}^{2}}-x \frac{m_{1}}{\sigma_{1}^{2}}+\frac{x^{2}}{2 \sigma_{2}^{2}}-x \frac{m_{2}}{\sigma_{2}^{2}}+\mathrm{const} \tag{S.26}\\
& =\frac{x^{2}}{2}\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)-x\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)+\mathrm{const} \tag{S.27}\\
& =\frac{x^{2}}{2 \sigma_{3}^{2}}-\frac{x}{\sigma_{3}^{2}} \sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)+\mathrm{const} \tag{S.28}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{\sigma_{3}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}} \tag{S.29}
\end{equation*}
$$

Comparison with (S.23) shows that we can further write

$$
\begin{equation*}
\frac{x^{2}}{2 \sigma_{3}^{2}}-\frac{x}{\sigma_{3}^{2}} \sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=\frac{\left(x-m_{3}\right)^{2}}{2 \sigma_{3}^{2}}+\mathrm{const} \tag{S.30}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) \tag{S.31}
\end{equation*}
$$

so that

$$
\begin{equation*}
-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right]=\frac{\left(x-m_{3}\right)^{2}}{2 \sigma_{3}^{2}}+\text { const } \tag{S.32}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) . \tag{S.33}
\end{equation*}
$$

Note that the identity

$$
\begin{equation*}
m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{S.34}
\end{equation*}
$$

is obtained as follows

$$
\begin{align*}
\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) \tag{S.35}\\
& =m_{1} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}+m_{2} \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{S.36}\\
& =m_{1}\left(1-\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)+m_{2} \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{S.37}\\
& =m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{S.38}
\end{align*}
$$

(d) In the lecture, we have seen that $p\left(h_{t} \mid v_{1: t}\right) \propto \alpha\left(h_{t}\right)$ where $\alpha\left(h_{t}\right)$ can be computed recursively via the "alpha-recursion"

$$
\begin{equation*}
\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \quad \alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) . \tag{10}
\end{equation*}
$$

We have also seen that the alpha-recursion corresponds to sum-product message passing with

$$
\begin{equation*}
\mu_{h_{s} \rightarrow \phi_{s+1}}\left(h_{s}\right)=\alpha\left(h_{s}\right) \quad \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{11}
\end{equation*}
$$

and that $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \propto p\left(h_{s} \mid v_{1: s-1}\right)$. For continuous random variables, the sum above becomes an integral so that

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \quad \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} . \tag{12}
\end{equation*}
$$

For a Gaussian prior distribution for h_{1} and Gaussian emission probability $p\left(v_{1} \mid h_{1}\right), \alpha\left(h_{1}\right)=$ $p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \propto p\left(h_{1} \mid v_{1}\right)$ is proportional to a Gaussian. We denote its mean by μ_{1} and its variance by σ_{1}^{2} so that

$$
\begin{equation*}
\alpha\left(h_{1}\right) \propto \mathcal{N}\left(h_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) . \tag{13}
\end{equation*}
$$

Assuming $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$ (which holds for $s=2$), use Equation (6) to show that

$$
\begin{equation*}
\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}=A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2} . \tag{15}
\end{equation*}
$$

Solution. We can set $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$. Since $p\left(h_{s} \mid h_{s-1}\right)$ is Gaussian, see Equation (2), Equation (12) becomes

$$
\begin{equation*}
\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\int \mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right) \mathrm{d} h_{s-1} . \tag{S.39}
\end{equation*}
$$

Equation (6) with $x \equiv h_{s-1}$ and $y \equiv h_{s}$ yields the desired result,

$$
\begin{equation*}
\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2}\right) \tag{S.40}
\end{equation*}
$$

With $\alpha\left(h_{s-1}\right) \propto p\left(h_{s-1} \mid v_{1: s-1}\right)$ and $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \propto p\left(h_{s} \mid v_{1: s-1}\right)$, we can understand the equation as follows: To compute the predictive mean of h_{s} given $v_{1: s-1}$, we forward propagate the mean of $h_{s-1} \mid v_{1: s-1}$ using the update equation (4). This gives the mean term $A_{s} \mu_{s-1}$. Since $h_{s-1} \mid v_{1: s-1}$ has variance σ_{s-1}^{2}, the variance of $h_{s} \mid v_{1: s-1}$ is given by $A_{s}^{2} \sigma_{s-1}^{2}$ plus an additional term, B_{s}^{2}, due to the noise in the forward propagation. This gives the variance term $A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2}$. In the lecture, it was pointed out that $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)$ is called the "prediction" step in the alpha-recursion. Indeed, we here compute the predictive distribution of h_{s} given $v_{1: s-1}$, which is the Gaussian in Equation (S.40).
(e) Use Equation (7) to show that

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{17}\\
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{18}
\end{align*}
$$

Solution. Having computed $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)$, the final step in the alpha-recursion is

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \tag{S.41}
\end{equation*}
$$

With Equation (3) we obtain

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{S.42}
\end{equation*}
$$

We further note that

$$
\begin{equation*}
\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) \propto \mathcal{N}\left(h_{s} \mid C_{s}^{-1} v_{s}, \frac{D_{s}^{2}}{C_{s}^{2}}\right) \tag{S.43}
\end{equation*}
$$

so that we can apply Equation (7) (with $m_{1}=A \mu_{s-1}, \sigma_{1}^{2}=P_{s}$)

$$
\begin{align*}
\alpha\left(h_{s}\right) & \propto \mathcal{N}\left(h_{s} \mid C_{s}^{-1} v_{s}, \frac{D_{s}^{2}}{C_{s}^{2}}\right) \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{S.44}\\
& \propto \mathcal{N}\left(h_{s}, \mu_{s}, \sigma_{s}^{2}\right) \tag{S.45}
\end{align*}
$$

with

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s}}{P_{s}+\frac{D_{s}^{2}}{C_{s}^{2}}}\left(C_{s}^{-1} v_{s}-A_{s} \mu_{s-1}\right) \tag{S.46}\\
& =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}^{2}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(C_{s}^{-1} v_{s}-A_{s} \mu_{s-1}\right) \tag{S.47}\\
& =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.48}\\
\sigma_{s}^{2} & =\frac{P_{s} \frac{D_{s}^{2}}{C_{s}^{2}}}{P_{s}+\frac{D_{s}^{2}}{C_{s}^{2}}} \tag{S.49}\\
& =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{S.50}
\end{align*}
$$

(f) Show that $\alpha\left(h_{s}\right)$ can be re-written as

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{20}\\
\sigma_{s}^{2} & =\left(1-K_{s} C_{s}\right) P_{s} \tag{21}\\
K_{s} & =\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}} \tag{22}
\end{align*}
$$

These are the Kalman filter equations and K_{s} is called the Kalman filter gain.

Solution. We start from

$$
\begin{equation*}
\mu_{s}=A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.52}
\end{equation*}
$$

and see that

$$
\begin{equation*}
\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}=K_{s} \tag{S.53}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mu_{s}=A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.54}
\end{equation*}
$$

For the variance σ_{s}^{2}, we have

$$
\begin{align*}
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{S.55}\\
& =\frac{D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} P_{s} \tag{S.56}\\
& =\left(1-\frac{P_{s} C_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}}\right) P_{s} \tag{S.57}\\
& =\left(1-K_{s} C_{s}\right) P_{s} \tag{S.58}
\end{align*}
$$

which is the desired result.
The filtering result generalises to vector valued latents and visibles where the transition and emission distributions in (2) and (3) become

$$
\begin{align*}
p\left(\mathbf{h}_{s} \mid \mathbf{h}_{s-1}\right) & =\mathcal{N}\left(\mathbf{h}_{s} \mid \mathbf{A} \mathbf{h}_{s-1}, \boldsymbol{\Sigma}^{h}\right) \tag{S.59}\\
p\left(\mathbf{v}_{s} \mid \mathbf{h}_{s}\right) & =\mathcal{N}\left(\mathbf{v}_{s} \mid \mathbf{C}_{s} \mathbf{h}_{s}, \boldsymbol{\Sigma}^{v}\right) \tag{S.60}
\end{align*}
$$

where $\mathcal{N}()$ denotes multivariate Gaussian pdfs, e.g.

$$
\begin{equation*}
\mathcal{N}\left(\mathbf{v}_{s} \mid \mathbf{C}_{s} \mathbf{h}_{s}, \boldsymbol{\Sigma}^{v}\right)=\frac{1}{\left|\operatorname{det}\left(2 \pi \boldsymbol{\Sigma}^{v}\right)\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{h}_{s}\right)^{\top}\left(\boldsymbol{\Sigma}^{v}\right)^{-1}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{h}_{s}\right)\right) \tag{S.61}
\end{equation*}
$$

We then have

$$
\begin{equation*}
p\left(\mathbf{h}_{t} \mid \mathbf{v}_{1: t}\right)=\mathcal{N}\left(\mathbf{h}_{t} \mid \boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right) \tag{S.62}
\end{equation*}
$$

where the posterior mean and variance are recursively computed as

$$
\begin{align*}
\boldsymbol{\mu}_{s} & =\mathbf{A}_{s} \boldsymbol{\mu}_{s-1}+\mathbf{K}_{s}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{A}_{s} \boldsymbol{\mu}_{s-1}\right) \tag{S.63}\\
\boldsymbol{\Sigma}_{s} & =\left(\mathbf{I}-\mathbf{K}_{s} \mathbf{C}_{s}\right) \mathbf{P}_{s} \tag{S.64}\\
\mathbf{P}_{s} & =\mathbf{A}_{s} \boldsymbol{\Sigma}_{s-1} \mathbf{A}_{s}^{\top}+\boldsymbol{\Sigma}^{h} \tag{S.65}\\
\mathbf{K}_{s} & =\mathbf{P}_{s} \mathbf{C}_{s}^{\top}\left(\mathbf{C}_{s} \mathbf{P}_{s} \mathbf{C}_{s}^{\top}+\boldsymbol{\Sigma}^{v}\right)^{-1} \tag{S.66}
\end{align*}
$$

and initialised with $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\Sigma}_{1}$ equal to the mean and variance of $p\left(\mathbf{h}_{1} \mid \mathbf{v}_{1}\right)$. The matrix \mathbf{K}_{s} is then called the Kalman gain matrix.
The Kalman filter is widely applicable, see e.g. https://en.wikipedia.org/wiki/Kalman_ filter, and has played a role in historic events such as the moon landing, see e.g. http://ieeexplore.ieee.org/document/5466132/
An example of the application of the Kalman filter to tracking is shown in Figure 1.

Figure 1: Kalman filtering for tracking of a moving object. The blue points indicate the true positions of the object in a two-dimensional space at successive time steps, the green points denote noisy measurements of the positions, and the red crosses indicate the means of the inferred posterior distributions of the positions obtained by running the Kalman filtering equations. The covariances of the inferred positions are indicated by the red ellipses, which correspond to contours having one standard deviation. (Bishop, Figure 13.22)
(g) Explain Equation (20) in non-technical terms. What happens if the variance D_{s}^{2} of the observation noise goes to zero?

Solution. We have already seen that $A_{s} \mu_{s-1}$ is the predictive mean of h_{s} given $v_{1: s-1}$. The term $C_{s} A_{s} \mu_{s-1}$ is thus the predictive mean of v_{s} given the observations so far, $v_{1: s-1}$. The difference $v_{s}-C_{s} A_{s} \mu_{s-1}$ is thus the prediction error of the observable. Since $\alpha\left(h_{s}\right)$ is proportional to $p\left(h_{s} \mid v_{1: s}\right)$ and μ_{s} its mean, we thus see that the posterior mean of $h_{s} \mid v_{1: s}$ equals the posterior mean of $h_{s} \mid v_{1: s-1}, A_{s} \mu_{s-1}$, updated by the prediction error of the observable weighted by the Kalman gain.

For $D_{s}^{2} \rightarrow 0, K_{s} \rightarrow C_{s}^{-1}$ and

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.67}\\
& =A_{s} \mu_{s-1}+C_{s}^{-1}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.68}\\
& =A_{s} \mu_{s-1}+C_{s}^{-1} v_{s}-A_{s} \mu_{s-1} \tag{S.69}\\
& =C_{s}^{-1} v_{s} \tag{S.70}
\end{align*}
$$

so that the posterior mean of $p\left(h_{s} \mid v_{1: s}\right)$ is obtained by inverting the observation equation. Moreover, $\sigma_{s}^{2} \rightarrow 0$, so that with zero observation noise, the value of h_{s} is known precisely.

