@ R — Probabilistic Modelling and Reasoning Spring 2020
& informatics Tutorial 5 — Notes Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the tutorial sheet.

Markov chains — A distribution factorised such that each variable x; depends on L previous
(contiguous) nodes {z;_r,...,x;—1}

Here: L =2

pa1, .. @) = [y p(@i | Tiep,- ., Tim1)

For L =1 we have a 15%-order Markov chain, p(z1,...,74) = H?le(xi | 2i—1)

The transition distribution p(z;, | x;—1) gives the probability of transitioning to different states.
However, if this does not depend on ¢, then the Markov chain is said to be homogeneous.

Hidden Markov model (HMM) — A 1%%-order Markov chain on latent variables h; (hid-
dens), with an additional set of visible variables v; that represent observations. An emission
distribution p(v; | h;) gives the probabilities of the observations v; (visibles) taking different
values, if the observations are real-valued then p(v; | h;) will be a probability density function.
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An HMM is said to be stationary if its transition and emission distributions don’t depend on 3.

Alpha-recursion A recursive process that propagates information forwards, from hs_1 to hg

a(hs) = p(vs | hs) Z p(hs | hs—1)a(hs—1) (1)

hs—1
a(h1) = p(h1)p(vy | k1) o< p(hy | v1) (2)

Beta-recursion A recursive process that propagates information backwards, from hg11 to hs

B(hs) = Z P(hst1 | hs)p(vsta | hsy1)B(hst1) (3)

hs+1

B(hu) = (4)



Filtering — Given previous observations vy.;_1, and the current observation v, infer the
current hidden state at time ¢

p(he [ v1:e) (5)
Smoothing — Given previous observations v;.;—1, and some future observations vy, infer
the hidden state at time ¢

p(ht | V1) (6)
Prediction — Given some previous observations vy.,, infer the hidden state at time ¢

p(he | V1) (7)
Most likely hidden path (Viterbi alignment) — Given previous observations v1.;—1, and

the current observation vy, find the most likely hidden path

ar%maxp(hl:t | Ul:t) (8)
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