These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the tutorial sheet.

Markov chains - A distribution factorised such that each variable x_{i} depends on L previous (contiguous) nodes $\left\{x_{i-L}, \ldots, x_{i-1}\right\}$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{i-L}, \ldots, x_{i-1}\right)
$$

For $L=1$ we have a $1^{\text {st }}$-order Markov chain, $p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{i-1}\right)$
The transition distribution $p\left(x_{i}, \mid x_{i-1}\right)$ gives the probability of transitioning to different states. However, if this does not depend on i, then the Markov chain is said to be homogeneous.

Hidden Markov model (HMM) - A $1^{\text {st }}$-order Markov chain on latent variables h_{i} (hiddens), with an additional set of visible variables v_{i} that represent observations. An emission distribution $p\left(v_{i} \mid h_{i}\right)$ gives the probabilities of the observations v_{i} (visibles) taking different values, if the observations are real-valued then $p\left(v_{i} \mid h_{i}\right)$ will be a probability density function.

$$
p\left(h_{1: d}, v_{1: d}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{d} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

An HMM is said to be stationary if its transition and emission distributions don't depend on i.

Alpha-recursion A recursive process that propagates information forwards, from h_{s-1} to h_{s}

$$
\begin{align*}
& \alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{1}\\
& \alpha\left(h_{1}\right)=p\left(h_{1}\right) p\left(v_{1} \mid h_{1}\right) \propto p\left(h_{1} \mid v_{1}\right) \tag{2}
\end{align*}
$$

Beta-recursion A recursive process that propagates information backwards, from h_{s+1} to h_{s}

$$
\begin{align*}
& \beta\left(h_{s}\right)=\sum_{h_{s+1}} p\left(h_{s+1} \mid h_{s}\right) p\left(v_{s+1} \mid h_{s+1}\right) \beta\left(h_{s+1}\right) \tag{3}\\
& \beta\left(h_{u}\right)=1 \tag{4}
\end{align*}
$$

Filtering - Given previous observations $v_{1: t-1}$, and the current observation v_{t}, infer the current hidden state at time t

$$
\begin{equation*}
p\left(h_{t} \mid v_{1: t}\right) \tag{5}
\end{equation*}
$$

Smoothing - Given previous observations $v_{1: t-1}$, and some future observations $v_{t: u}$, infer the hidden state at time t

$$
\begin{equation*}
p\left(h_{t} \mid v_{1: u}\right) \tag{6}
\end{equation*}
$$

Prediction - Given some previous observations $v_{1: u}$, infer the hidden state at time t

$$
\begin{equation*}
p\left(h_{t} \mid v_{1: u}\right) \tag{7}
\end{equation*}
$$

Most likely hidden path (Viterbi alignment) - Given previous observations $v_{1: t-1}$, and the current observation v_{t}, find the most likely hidden path

$$
\begin{equation*}
\underset{h_{1: t}}{\operatorname{argmax}} p\left(h_{1: t} \mid v_{1: t}\right) \tag{8}
\end{equation*}
$$

