Exercise 1. Hidden Markov model - beta-recursion

We consider the following factor graph from the lecture on hidden Markov models.

The factor graph corresponds to the conditional pmf

$$
p\left(h_{1}, \ldots, h_{6}, v_{5}, v_{6} \mid v_{1: 4}\right)
$$

and the factors are defined as

$$
\begin{align*}
f_{t}\left(h_{t}\right) & =p\left(v_{t} \mid h_{t}\right) \quad(t \leq 4) & f_{t}\left(v_{t}, h_{t}\right) & =p\left(v_{t} \mid h_{t}\right)(t>4) \tag{1}\\
\phi_{1}\left(h_{1}\right) & =p\left(h_{1}\right) & \phi_{t}\left(h_{t}, h_{t-1}\right) & =p\left(h_{t} \mid h_{t-1}\right)(t>1)
\end{align*}
$$

We define $\beta\left(h_{s}\right)=\mu_{\phi_{s+1} \rightarrow h_{s}}\left(h_{s}\right)$, which is the message from a factor node "back" to a variable node.
(a) Show that $\beta\left(h_{4}\right)=\mu_{\phi_{5} \rightarrow h_{4}}\left(h_{4}\right)=1$.

Solution. The arrows in the factor graph below show the messages that need to be computed for the computation of $\beta\left(h_{4}\right)$.

We start with the leaf variable v_{6} :

$$
\begin{align*}
\mu_{v_{6} \rightarrow f_{6}}\left(v_{6}\right) & =1 \tag{S.1}\\
\mu_{f_{6} \rightarrow h_{6}}\left(h_{6}\right) & =\sum_{v_{6}} f_{6}\left(v_{6}, h_{6}\right) \mu_{v_{6} \rightarrow f_{6}}\left(v_{6}\right) \tag{S.2}\\
& =\sum_{v_{6}} p\left(v_{6} \mid h_{6}\right) \cdot 1 \tag{S.3}\\
& =1 \quad \text { since (conditional) pmfs and pdfs are normalised } \tag{S.4}
\end{align*}
$$

The variable node h_{6}, having a single incoming message only, copies the message so that

$$
\begin{equation*}
\mu_{h_{6} \rightarrow \phi_{6}}\left(h_{6}\right)=\beta\left(h_{6}\right)=1 \tag{S.5}
\end{equation*}
$$

For the next message, which corresponds to the elimination of h_{6}, we have:

$$
\begin{align*}
\mu_{\phi_{6} \rightarrow h_{5}}\left(h_{5}\right) & =\sum_{h_{6}} \phi_{6}\left(h_{6}, h_{5}\right) \mu_{h_{6} \rightarrow \phi_{6}}\left(h_{6}\right) \tag{S.6}\\
& =\sum_{h_{6}} p\left(h_{6} \mid h_{5}\right) \cdot 1 \tag{S.7}\\
& =1 \quad \text { since (conditional) pmfs and pdfs are normalised. } \tag{S.8}
\end{align*}
$$

The same kind of calculations show that $\mu_{f_{5} \rightarrow h_{5}}=1$. It follows that

$$
\begin{align*}
\mu_{h_{5} \rightarrow \phi_{5}}\left(x_{5}\right) & =\mu_{\phi_{6} \rightarrow h_{5}}\left(h_{5}\right) \mu_{f_{5} \rightarrow h_{5}} \tag{S.9}\\
& =1 \tag{S.10}
\end{align*}
$$

We thus obtain the desired result for $\beta\left(h_{4}\right)=\mu_{\phi_{5} \rightarrow h_{4}}\left(h_{4}\right)$:

$$
\begin{align*}
\mu_{\phi_{5} \rightarrow h_{4}}\left(h_{4}\right) & =\sum_{h_{5}} \phi_{5}\left(h_{5}, h_{4}\right) \mu_{h_{5} \rightarrow \phi_{5}}\left(x_{5}\right) \tag{S.11}\\
& =\sum_{x_{5}} p\left(h_{5} \mid h_{4}\right) \cdot 1 \tag{S.12}\\
& =1 \quad \text { since (conditional) pmfs and pdfs are normalised. } \tag{S.13}
\end{align*}
$$

(b) Use sum-product message passing to show that the beta-recursion holds

$$
\begin{align*}
& \beta\left(h_{4}\right)=1 \tag{3}\\
& \beta\left(h_{s}\right)=\sum_{h_{s+1}} p\left(h_{s+1} \mid h_{s}\right) p\left(v_{s+1} \mid h_{s+1}\right) \beta\left(h_{s+1}\right) \quad(s<4) \tag{4}
\end{align*}
$$

Solution. We defined $\beta\left(h_{s}\right)$ as the message $\mu_{\phi_{s+1} \rightarrow h_{s}}\left(h_{s}\right)$. We thus also have

$$
\begin{equation*}
\beta\left(h_{s+1}\right)=\mu_{\phi_{s+2} \rightarrow h_{s+1}}\left(h_{s+1}\right), \tag{S.14}
\end{equation*}
$$

which is the effective factor for h_{s+1} if all variables in all sub-trees attached to ϕ_{s+2}, with exception of the sub-trees attached to h_{s+1}, are eliminated. This gives us the following fragment of a factor graph

Message passing tell us that

$$
\begin{equation*}
\beta\left(h_{s}\right)=\mu_{\phi_{s+1} \rightarrow h_{s}}\left(h_{s}\right)=\sum_{h_{s+1}} \phi_{s+1}\left(h_{s+1}, h_{s}\right) \mu_{h_{s+1} \rightarrow \phi_{s+1}}\left(h_{s+1}\right) \tag{S.15}
\end{equation*}
$$

and that

$$
\begin{align*}
\mu_{h_{s+1} \rightarrow \phi_{s+1}}\left(h_{s+1}\right) & =\mu_{f_{s+1} \rightarrow h_{s+1}}\left(h_{s+1}\right) \mu_{\beta\left(h_{s+1}\right) \rightarrow h_{s+1}}\left(h_{s+1}\right) \tag{S.16}\\
& =f_{s+1}\left(h_{s+1}\right) \beta\left(h_{s+1}\right), \tag{S.17}
\end{align*}
$$

where for the last equation, we have used that f_{s+1} and $\beta\left(h_{s+1}\right)$ are leaf factor nodes. We thus obtain

$$
\begin{equation*}
\beta\left(h_{s}\right)=\mu_{\phi_{s+1} \rightarrow h_{s}}\left(h_{s}\right)=\sum_{h_{s+1}} \phi_{s+1}\left(h_{s+1}, h_{s}\right) f_{s+1}\left(h_{s+1}\right) \beta\left(h_{s+1}\right) . \tag{S.19}
\end{equation*}
$$

Plugging in the definition of the factors gives

$$
\begin{equation*}
\beta\left(h_{s}\right)=\sum_{h_{s+1}} p\left(h_{s+1} \mid h_{s}\right) p\left(v_{s+1} \mid h_{s+1}\right) \beta\left(h_{s+1}\right) \tag{S.20}
\end{equation*}
$$

which is the desired recursion. In our factor graph, the recursion is initialised with $\beta\left(h_{4}\right)=$ 1.

