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Exercise 1. Hidden Markov model – beta-recursion

We consider the following factor graph from the lecture on hidden Markov models.
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The factor graph corresponds to the conditional pmf

p(h1, . . . , h6, v5, v6 | v1:4)

and the factors are defined as

ft(ht) = p(vt|ht) (t ≤ 4) ft(vt, ht) = p(vt|ht) (t > 4) (1)

φ1(h1) = p(h1) φt(ht, ht−1) = p(ht|ht−1) (t > 1) (2)

We define β(hs) = µφs+1→hs
(hs), which is the message from a factor node “back” to a variable node.

(a) Show that β(h4) = µφ5→h4
(h4) = 1.

Solution. The arrows in the factor graph below show the messages that need to be
computed for the computation of β(h4).
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We start with the leaf variable v6:

µv6→f6(v6) = 1 (S.1)

µf6→h6(h6) =
∑
v6

f6(v6, h6)µv6→f6(v6) (S.2)

=
∑
v6

p(v6|h6) · 1 (S.3)

= 1 since (conditional) pmfs and pdfs are normalised (S.4)

The variable node h6, having a single incoming message only, copies the message so that

µh6→φ6(h6) = β(h6) = 1. (S.5)
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For the next message, which corresponds to the elimination of h6, we have:

µφ6→h5(h5) =
∑
h6

φ6(h6, h5)µh6→φ6(h6) (S.6)

=
∑
h6

p(h6|h5) · 1 (S.7)

= 1 since (conditional) pmfs and pdfs are normalised. (S.8)

The same kind of calculations show that µf5→h5 = 1. It follows that

µh5→φ5(x5) = µφ6→h5(h5)µf5→h5 (S.9)

= 1. (S.10)

We thus obtain the desired result for β(h4) = µφ5→h4(h4):

µφ5→h4(h4) =
∑
h5

φ5(h5, h4)µh5→φ5(x5) (S.11)

=
∑
x5

p(h5|h4) · 1 (S.12)

= 1 since (conditional) pmfs and pdfs are normalised. (S.13)

(b) Use sum-product message passing to show that the beta-recursion holds

β(h4) = 1 (3)

β(hs) =
∑
hs+1

p(hs+1|hs)p(vs+1|hs+1)β(hs+1) (s < 4) (4)

Solution. We defined β(hs) as the message µφs+1→hs(hs). We thus also have

β(hs+1) = µφs+2→hs+1(hs+1), (S.14)

which is the effective factor for hs+1 if all variables in all sub-trees attached to φs+2, with
exception of the sub-trees attached to hs+1, are eliminated. This gives us the following
fragment of a factor graph
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Message passing tell us that

β(hs) = µφs+1→hs(hs) =
∑
hs+1

φs+1(hs+1, hs)µhs+1→φs+1(hs+1) (S.15)

and that

µhs+1→φs+1(hs+1) = µfs+1→hs+1(hs+1)µβ(hs+1)→hs+1
(hs+1) (S.16)

= fs+1(hs+1)β(hs+1), (S.17)

(S.18)
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where for the last equation, we have used that fs+1 and β(hs+1) are leaf factor nodes. We
thus obtain

β(hs) = µφs+1→hs(hs) =
∑
hs+1

φs+1(hs+1, hs)fs+1(hs+1)β(hs+1). (S.19)

Plugging in the definition of the factors gives

β(hs) =
∑
hs+1

p(hs+1|hs)p(vs+1|hs+1)β(hs+1), (S.20)

which is the desired recursion. In our factor graph, the recursion is initialised with β(h4) =
1.
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