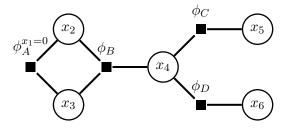

Exercise 1. Choice of elimination order in factor graphs

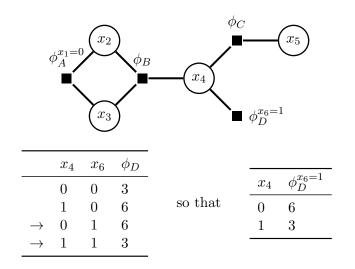
Consider the following factor graph, which contains a loop:


Let all variables be binary, $x_i \in \{0, 1\}$, and the factors be defined as follows:

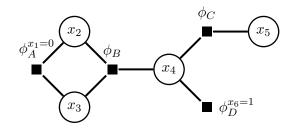
x_1	x_2	x_3	ϕ_A	_	x_2	x_3	x_4	ϕ_B						
0	0	0	4		0	0	0	2		x_5	ϕ_C	$\overline{x_4}$	x_6	фл
1	0	0	\mathcal{Z}		1	0	0	2	<i>w</i> ₄	x_5	φ_C	<i>x</i> ₄	x_{0}	φD
0	1	0	$\mathcal{2}$		0	1	0	4	0	0	8	0	0	\mathcal{Z}
1	1	0	6		1	1	0	\mathcal{Z}	1	0	$\mathcal{2}$	1	0	6
0	0	1	$\mathcal{2}$		0	0	1	6	θ	1	$\mathcal{2}$	θ	1	6
1	0	1	6		1	0	1	8	1	1	6	1	1	3
0	1	1	6		0	1	1	4						
1	1	1	4		1	1	1	2						

(a) Draw the factor graph corresponding to $p(x_2, x_3, x_4, x_5 | x_1 = 0, x_6 = 1)$ and give the tables defining the new factors $\phi_A^{x_1=0}(x_2, x_3)$ and $\phi_D^{x_6=1}(x_4)$ that you obtain.

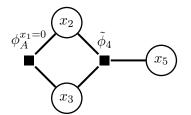
Solution. First condition on $x_1 = 0$:


Factor node $\phi_A(x_1, x_2, x_3)$ depends on x_1 , thus we create a new factor $\phi_A^{x_1=0}(x_2, x_3)$ from the table for ϕ_A using the rows where $x_1 = 0$.

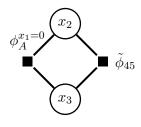
	x_1	x_2	x_3	ϕ_A				
\rightarrow	0	0	0	4				$\phi_A^{x_1=0}$
	1	0	0	2		x_2	x_3	$\phi_A^{\omega_1=0}$
\rightarrow	0	1	0	2	_	0	0	4
	1	1	0	6	so that	1	0	2
\rightarrow	0	0	1	2		0	1	2
	1	0	1	6		1	1	6
\rightarrow	0	1	1	6				
	1	1	1	4				


Next condition on $x_6 = 1$:

Factor node $\phi_D(x_4, x_6)$ depends on x_6 , thus we create a new factor $\phi_D^{x_6=1}(x_4)$ from the table for ϕ_D using the rows where $x_6 = 1$.



- (b) Find $p(x_2 | x_1 = 0, x_6 = 1)$ using the elimination ordering (x_4, x_5, x_3) :
 - (i) Draw the graph for $p(x_2, x_3, x_5 | x_1 = 0, x_6 = 1)$ by marginalising x_4 Compute the table for the new factor $\tilde{\phi}_4(x_2, x_3, x_5)$
 - (ii) Draw the graph for $p(x_2, x_3 | x_1 = 0, x_6 = 1)$ by marginalising x_5 Compute the table for the new factor $\phi_{45}(x_2, x_3)$
 - (iii) Draw the graph for $p(x_2 | x_1 = 0, x_6 = 1)$ by marginalising x_3 Compute the table for the new factor $\tilde{\phi}_{453}(x_2)$


Solution. Starting with the factor graph for $p(x_2, x_3, x_4, x_5 | x_1 = 0, x_6 = 1)$

Marginalising x_4 combines the three factors ϕ_B , ϕ_C and $\phi_D^{x_6=1}$

Marginalising x_5 modifies the factor $\tilde{\phi}_4$

Marginalising x_3 combines the factors $\phi_A^{x_1=0}$ and $\tilde{\phi}_{45}$

We now compute the tables for the new factors $\tilde{\phi}_4$, $\tilde{\phi}_{45}$, $\tilde{\phi}_{453}$. First find $\tilde{\phi}_4(x_2, x_3, x_5)$

x_2	x_3	x_4	ϕ_B						
0	0	0	2	-			1		
1	0	0	2	_	x_4	x_5	ϕ_C		$\phi_{D}^{x_{6}=1}$
0	1	0	4		0	0	8	x_4	$\phi_D^{\omega_0}$
1	1	0	2		1	0	2	0	6
0	0	1	6		0	1	2	1	3
1	0	1	8		1	1	6		
0	1	1	4	-					
1	1	1	2						

so that

x_2	x_3	x_5	$\sum_{x_4} \phi_B(x_2, x_3, x_4) \phi_C(x_4, x_5) \phi_D^{x_6=1}(x_4)$		$ ilde{\phi}_4$
0	0	0	(2 * 8 * 6) + (6 * 2 * 3)	=	132
1	0	0	(2 * 8 * 6) + (8 * 2 * 3)	=	144
0	1	0	(4 * 8 * 6) + (4 * 2 * 3)	=	216
1	1	0	(2 * 8 * 6) + (2 * 2 * 3)	=	108
0	0	1	(2 * 2 * 6) + (6 * 6 * 3)	=	132
1	0	1	(2 * 2 * 6) + (8 * 6 * 3)	=	168
0	1	1	(4 * 2 * 6) + (4 * 6 * 3)	=	120
1	1	1	(2 * 2 * 6) + (2 * 6 * 3)	=	60

Next find $\tilde{\phi}_{45}(x_2, x_3)$

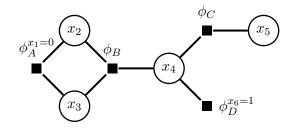
x_2	x_3	x_5	$ ilde{\phi}_4$	
0	0	0	132	
1	0	0	144	
0	1	0	216	_
1	1	0	108	so that
0	0	1	132	
1	0	1	168	
0	1	1	120	
1	1	1	60	

x_2	x_3	$\sum_{x_5} ilde{\phi}_4(x_2,x_3,x_5)$		$\tilde{\phi}_{45}$
0	0	132 + 132	=	264
1	0	144 + 168	=	312
0	1	216 + 120	=	336
1	1	108 + 60	=	168

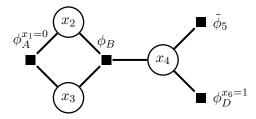
Finally find $\tilde{\phi}_{453}(x_2)$

x_2	x_3	$\phi_A^{x_1=0}$	x_2	x_3	$\tilde{\phi}_{45}$
0	0	4	0	0	264
1	0	2	1	0	312
0	1	2	0	1	336
1	1	6	1	1	168

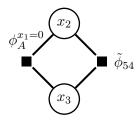
so that

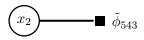

x_2	$\sum_{x_3} ilde{\phi}_{45}(x_2,x_3)$		$ ilde{\phi}_{453}$
0	(4 * 264) + (2 * 336)	=	1728
1	(2 * 312) + (6 * 168)	=	1632

The normalising constant is Z = 1728 + 1632. Our conditional marginal is thus:


$$p(x_2 \mid x_1 = 0, x_6 = 1) = \begin{pmatrix} 1728/Z \\ 1632/Z \end{pmatrix} = \begin{pmatrix} 0.514 \\ 0.486 \end{pmatrix}$$
 (S.1)

- (c) Note that the previous variable ordering involved computing a new factor $\tilde{\phi}_4$ that depends on three variables x_2 , x_3 , and x_5 , this involved computing 2^3 numbers (i.e. the rows in the table for $\tilde{\phi}_4$). Instead, now find $p(x_2 \mid x_1 = 0, x_6 = 1)$ using the elimination ordering (x_5, x_4, x_3) ,
 - (i) Draw the graph for $p(x_2, x_3, x_4, | x_1 = 0, x_6 = 1)$ by marginalising x_5 Compute the table for the new factor $\phi_5(x_4)$
 - (ii) Draw the graph for $p(x_2, x_3 | x_1 = 0, x_6 = 1)$ by marginalising x_4 Compute the table for the new factor $\phi_{54}(x_2, x_3)$
 - (iii) Draw the graph for $p(x_2 | x_1 = 0, x_6 = 1)$ by marginalising x_3 Compute the table for the new factor $\tilde{\phi}_{543}(x_2)$


Solution. Starting with the factor graph for $p(x_2, x_3, x_4, x_5 | x_1 = 0, x_6 = 1)$


Marginalising x_5 modifies the factor ϕ_C

Marginalising x_4 combines the three factors ϕ_B , $\tilde{\phi}_5$ and $\phi_D^{x_6=1}$

Marginalising x_3 combines the factors $\phi_A^{x_1=0}$ and $\tilde{\phi}_{54}$

We now compute the tables for the new factors $\tilde{\phi}_5$, $\tilde{\phi}_{54}$, and $\tilde{\phi}_{543}$. First find $\tilde{\phi}_5(x_4)$

x_4	x_5	ϕ_C					
0	0	8	-	x_4	$\sum_{x_5} \phi_C(x_4, x_5)$		$ ilde{\phi}_5$
1	0	2	so that	0	8 + 2	=	10
0	1	2		1	2 + 6	=	8
1	1	6					

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								_				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									ϕ_B	x_4	x_3	x_2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									2	0	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$x_6 = 1$		_	ĩ			2	0	0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ϕ_D^{-1}	x_4	_	ϕ_5	x_4		4	0	1	0
$ \frac{1}{1} 0 1 8 1 0 1 8 1 1 1 1 1 1 1 1$	so that		6	0		10	0		2	0	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3	1		8	1		6	1	0	0
$ \frac{1}{1} \frac{1}{1} \frac{1}{2} 1$					-				8	1	0	1
$ \frac{x_2 x_3 \sum_{x_4} \phi_B(x_2, x_3, x_4) \tilde{\phi}_5(x_4) \phi_D^{x_6=1}(x_4)}{0 0 (2 * 10 * 6) + (6 * 8 * 3)} = 264 \\ \frac{1}{0} 0 (2 * 10 * 6) + (8 * 8 * 3) = 312 \\ 0 1 (4 * 10 * 6) + (4 * 8 * 3) = 336 $									4	1	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									2	1	1	1
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\tilde{\phi}_{54}$		$b^{6=1}(x_4)$	$\phi_{D}^{x_{e}}$	$\tilde{\phi}_5(x$	$(x_4)\hat{\phi}$	$x_{3}, x_{3}, $	B(x)	$\sum_{x_4} \phi_1$	Σ	x_3	x_2
0 1 (4 * 10 * 6) + (4 * 8 * 3) = 336	264	=		3)	8 *	(6 *	5) +) * (* 10	(2	0	0
	312	=		3)	8 *	(8 *	(5) + (1)) * (* 10	(2	0	1
1 1 (2 * 10 * 6) + (2 * 8 * 3) = 168	336	=		3)	8 *	(4 *	5) +) * (* 10	(4	1	0
	168	=		3)	8 *	(2 *	5) +) * (* 1((2	1	1

Finally find $\tilde{\phi}_{543}(x_2)$

x_2	x_3	$\phi_A^{x_1=0}$	x_2	x_3	$\tilde{\phi}_{54}$
0	0	4	0	0	264
1	0	2	1	0	312
0	1	2	0	1	336
1	1	6	1	1	168

so that

x_2	$\sum_{x_3} ilde{\phi}_{54}(x_2,x_3)$		$\tilde{\phi}_{543}$
0	(4 * 264) + (2 * 336)	=	1728
1	(2 * 312) + (6 * 168)	=	1632

As with the less efficient ordering in the previous part, we should come to the same result for our conditional marginal distribution. The normalising constant is Z = 1728 + 1632, so that the conditional marginal is

$$p(x_2 \mid x_1 = 0, x_6 = 1) = \begin{pmatrix} 1728/Z \\ 1632/Z \end{pmatrix} = \begin{pmatrix} 0.514 \\ 0.486 \end{pmatrix}$$
 (S.2)

Note that with the first variable ordering (x_4, x_5, x_3) we had to compute 14 numbers $(2^3 + 2^2 + 2^1 = 14)$, but with the better variable ordering (x_5, x_4, x_3) we only needed to compute 8 numbers $(2^1 + 2^2 + 2^1 = 8)$. Choosing a reasonable variable ordering has a direct effect on the computational complexity of variable elimination. This effect becomes even more pronounced when the domain of our discrete variables has a size greater than 2 (binary variables), or if the variables are continuous.