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Exercise 1. I-maps

(a) Which of three graphs represent the same set of independencies? Explain.
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Solution. The skeleton of graph 3 is different from the skeleton of graphs 1 and 2, so
that graph 3 cannot be I-equivalent to graph 1 or 2, and we do not need to further check
the immoralities for graph 3. Graph 1 and 2 have the same skeleton, and they also have
the same immorality. Hence, graph 1 and 2 are I-equivalent. Note that node w in graph 1
is in a collider configuration along trail v − w − x but it is not an immorality because its
parents are connected (covering edge); equivalently for node v in graph 2.
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(b) Assume the graph below is a perfect map for a set of independencies U .
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Graph 0

For each of the three graphs, explain whether the graph is a perfect map, an I-map, or not an I-map
for U .
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Solution.

• Graph 1 has an immorality x2 → x5 ← x7 which graph 0 does not have. The graph is
thus not I-equivalent to graph 0 and can thus not be a perfect map. Moreover, graph
1 asserts that x2 ⊥⊥ x7|x4 which is not case for graph 0. Since graph 0 is a perfect
map for U , graph 1 asserts an independency that does not hold for U and can thus
not be an I-map for U .
• Graph 2 has an immorality x1 → x3 ← x7 which graph 0 does not have. Graph 2

thus asserts that x1 ⊥⊥ x7, which is not the case for graph 0. Hence, for the same
reason as for graph 1, graph 2 is not an I-map for U .

• Graph 3 has the same skeleton and set of immoralities as graph 0. It is thus I-
equivalent to graph 0, and hence also a perfect map.

Exercise 2. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where p(y1, y2|x1, x2)
factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (1)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (2)

In the lecture “Factor Graphs”, we used the model to illustrate the setup where x1 and x2 are two inde-
pendent inputs that each control the interacting variables y1 and y2 (see graph below).
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some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (3)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (4)

to show that p(y1, y2, x1, x2) satisfies the following independencies

x1 ⊥⊥ x2 x1 ⊥⊥ y2 | y1, x2 x2 ⊥⊥ y1 | y2, x1

Solution. The pdf/pmf is

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

For x1 ⊥⊥ x2

We compute p(x1, x2) as

p(x1, x2) =

∫
p(y1, y2, x1, x2)dy1dy2 (S.1)

=

∫
p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)dy1dy2 (S.2)

= n(x1, x2)p(x1)p(x2)

∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2 (S.3)

(2)
= n(x1, x2)p(x1)p(x2)

1

n(x1, x2)
(S.4)

= p(x1)p(x2). (S.5)

Since p(x1) and p(x2) are the univariate marginals of x1 and x2, respectively, it follows
from (3) that x1 ⊥⊥ x2.

For x1 ⊥⊥ y2 | y1,x2

We rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.6)

= [p(y1|x1)p(x1)n(x1, x2)] [p(y2|x2)φ(y1, y2)p(x2)] (S.7)

= φA(x1, y1, x2)φB(y2, y1, x2) (S.8)

With (4), we have that x1 ⊥⊥ y2 | y1, x2. Note that p(x2) can be associated either with φA
or with φB.

For x2 ⊥⊥ y1 | y2,x1

We use here the same approach as for x1 ⊥⊥ y2 | y1, x2. (By symmetry considerations,
we could immediately see that the relation holds but let us write it out for clarity). We
rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.9)

= [p(y2|x2)n(x1, x2)p(x2)p(x1))] [p(y1|x1)φ(y1, y2)]) (S.10)

= φ̃A(x2, x1, y2)φ̃B(y1, y2, x1) (S.11)
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With (4), we have that x2 ⊥⊥ y1 | y2, x1.

(b) Is there an undirected perfect map for the independencies satisifed by p(y1, y2, x1, x2)?

Solution. We write

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

as a Gibbs distribution

p(y1, y2, x1, x2) = φ1(y1, x1)φ2(y2, x2)φ3(y1, y2)φ4(x1, x2) with (S.12)

φ1(y1, x1) = p(y1|x1)p(x1) (S.13)

φ2(y2, x2) = p(y2|x2)p(x2) (S.14)

φ3(y1, y2) = φ(y1, y2) (S.15)

φ4(x1, x2) = n(x1, x2). (S.16)

Visualising it as an undirected graph gives an I-map:

x1 x2

y1 y2

While the graph implies x1 ⊥⊥ y2 | y1, x2 and x2 ⊥⊥ y1 | y2, x1, the independency x1 ⊥⊥ x2
is not represented. Hence the graph is not a perfect map. Note further that removing any
edge would result in a graph that is not an I-map for I(p) anymore. Hence the graph is a
minimal I-map for I(p) but that we cannot obtain a perfect I-map.

(c) Is there a directed perfect map for the independencies satisifed by p(y1, y2, x1, x2)?

Solution. We construct directed minimal I-maps for p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2)
for different orderings as explained in the lecture. We will see that they do not represent
all independencies in I(p) and hence that they are not perfect I-maps.

To guarantee unconditional independence of x1 and x2, the two variables must come first
in the orderings (either x1 and then x2 or the other way around).

If we use the ordering x1, x2, y1, y2, and that

• x1 ⊥⊥ x2
• y2 ⊥⊥ x1|y1, x2, which is y2 ⊥⊥ pre(y2) \ π|π for π = (y1, x2)

are in I(p), we obtain the following directed minimal I-map:

x1 x2

y1 y2
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The graphs misses x2 ⊥⊥ y1 | y2, x1.
If we use the ordering x1, x2, y2, y1, and that

• x1 ⊥⊥ x2
• y1 ⊥⊥ x2|x1, y2, which is y1 ⊥⊥ pre(y1) \ π|π for π = (x1, y2)

are in I(p), we obtain the following directed minimal I-map:

x1 x2

y1 y2

The graph misses x1 ⊥⊥ y2 | y1, x2.
Moreover, the graphs imply a directionality between y1 and y2, or a direct influence of x1
on y2, or of x2 on y1, in contrast to the original modelling goals.

(d) (optional, not examinable) In the lecture, we have the following factor graph for p(y1, y2, x1, x2)

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Use the separation rules for factor graphs to verify that we can find all independence relations.
The separation rules are (see Barber, section 4.4.1, or the original paper by Brendan Frey: https:

// arxiv. org/ abs/ 1212. 2486 ):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if one or
more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of the path
(variable or factor collider), and neither the variable or factor nor any of its descendants are
in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable of factor node are all the variables that you can reach by following
a path (containing directed or directed edges, but for directed edges, all directions have to be
consistent)

• In the graph we have dashed directed edges: they do count when you determine the descendants
but they do not contribute to paths. For example, y1 is a descendant of the n(x1, x2) factor
node but x1 − n− y2 is not a path.
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Solution. x1 ⊥⊥ x2

There are two paths from x1 to x2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Both the blue and red path are blocked by condition 2.

x1 ⊥⊥ y2 | y1,x2

There are two paths from x1 to y2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

The observed variables are marked in blue. For the red path, the observed x2 blocks the
path (condition 1). Note that the n(x1, x2) node would be open by condition 2. The blue
path is blocked by condition 1 too. In directed graphical models, the y1 node would be
open, but here while condition 2 does not apply, condition 1 still applies (note the one or
more of ... in the separation rules), so that the path is blocked.

x2 ⊥⊥ y1 | y2,x1

There are two paths from x2 to y1 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(x1 x2)

The same reasoning as before yields the result.

Finally note that x1 and x2 are not independent given y1 or y2 because the upper path
through n(x1, x2) is not blocked whenever y1 or y2 are observed (condition 2).

Credit: this example is discussed in the original paper by B. Frey (Figure 6).
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