Exercise 1. I-maps

(a) Which of three graphs represent the same set of independencies? Explain.

Graph 1

Graph 2

Graph 3

Solution. The skeleton of graph 3 is different from the skeleton of graphs 1 and 2 , so that graph 3 cannot be I-equivalent to graph 1 or 2 , and we do not need to further check the immoralities for graph 3. Graph 1 and 2 have the same skeleton, and they also have the same immorality. Hence, graph 1 and 2 are I-equivalent. Note that node w in graph 1 is in a collider configuration along trail $v-w-x$ but it is not an immorality because its parents are connected (covering edge); equivalently for node v in graph 2.

skeleton

immorality
(b) Assume the graph below is a perfect map for a set of independencies \mathcal{U}.

Graph 0

For each of the three graphs, explain whether the graph is a perfect map, an I-map, or not an I-map for \mathcal{U}.

Graph 1

Graph 2

Graph 3

Solution.

- Graph 1 has an immorality $x_{2} \rightarrow x_{5} \leftarrow x_{7}$ which graph 0 does not have. The graph is thus not I-equivalent to graph 0 and can thus not be a perfect map. Moreover, graph 1 asserts that $x_{2} \Perp x_{7} \mid x_{4}$ which is not case for graph 0 . Since graph 0 is a perfect map for \mathcal{U}, graph 1 asserts an independency that does not hold for \mathcal{U} and can thus not be an I-map for \mathcal{U}.
- Graph 2 has an immorality $x_{1} \rightarrow x_{3} \leftarrow x_{7}$ which graph 0 does not have. Graph 2 thus asserts that $x_{1} \Perp x_{7}$, which is not the case for graph 0 . Hence, for the same reason as for graph 1 , graph 2 is not an I-map for \mathcal{U}.
- Graph 3 has the same skeleton and set of immoralities as graph 0 . It is thus Iequivalent to graph 0 , and hence also a perfect map.

Exercise 2. Limits of directed and undirected graphical models

We here consider the probabilistic model $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)$ where $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ factorises as

$$
\begin{equation*}
p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)=p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) \tag{1}
\end{equation*}
$$

with $n\left(x_{1}, x_{2}\right)$ equal to

$$
\begin{equation*}
n\left(x_{1}, x_{2}\right)=\left(\int p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}\right)^{-1} \tag{2}
\end{equation*}
$$

In the lecture "Factor Graphs", we used the model to illustrate the setup where x_{1} and x_{2} are two independent inputs that each control the interacting variables y_{1} and y_{2} (see graph below).

(a) Use the basic characterisations of statistical independence

$$
\begin{align*}
& u \Perp v \mid z \Longleftrightarrow p(u, v \mid z)=p(u \mid z) p(v \mid z) \tag{3}\\
& u \Perp v \mid z \Longleftrightarrow p(u, v \mid z)=a(u, z) b(v, z) \quad(a(u, z) \geq 0, b(v, z) \geq 0) \tag{4}
\end{align*}
$$

to show that $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ satisfies the following independencies

$$
x_{1} \Perp x_{2} \quad x_{1} \Perp y_{2}\left|y_{1}, x_{2} \quad x_{2} \Perp y_{1}\right| y_{2}, x_{1}
$$

Solution. The pdf/pmf is

$$
p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)
$$

For $\mathbf{x}_{\mathbf{1}} \Perp \mathbf{x}_{\mathbf{2}}$
We compute $p\left(x_{1}, x_{2}\right)$ as

$$
\begin{align*}
p\left(x_{1}, x_{2}\right) & =\int p\left(y_{1}, y_{2}, x_{1}, x_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{S.1}\\
& =\int p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{S.2}\\
& =n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) \int p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2} \tag{S.3}\\
& \stackrel{(2)}{=} n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) \frac{1}{n\left(x_{1}, x_{2}\right)} \tag{S.4}\\
& =p\left(x_{1}\right) p\left(x_{2}\right) \tag{S.5}
\end{align*}
$$

Since $p\left(x_{1}\right)$ and $p\left(x_{2}\right)$ are the univariate marginals of x_{1} and x_{2}, respectively, it follows from (3) that $x_{1} \Perp x_{2}$.

For $\mathbf{x}_{\mathbf{1}} \Perp \mathbf{y}_{\mathbf{2}} \mid \mathbf{y}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}$
We rewrite $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ as

$$
\begin{align*}
p\left(y_{1}, y_{2}, x_{1}, x_{2}\right) & =p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) \tag{S.6}\\
& =\left[p\left(y_{1} \mid x_{1}\right) p\left(x_{1}\right) n\left(x_{1}, x_{2}\right)\right]\left[p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) p\left(x_{2}\right)\right] \tag{S.7}\\
& =\phi_{A}\left(x_{1}, y_{1}, x_{2}\right) \phi_{B}\left(y_{2}, y_{1}, x_{2}\right) \tag{S.8}
\end{align*}
$$

With (4), we have that $x_{1} \Perp y_{2} \mid y_{1}, x_{2}$. Note that $p\left(x_{2}\right)$ can be associated either with ϕ_{A} or with ϕ_{B}.

For $\mathbf{x}_{\mathbf{2}} \Perp \mathbf{y}_{\mathbf{1}} \mid \mathbf{y}_{\mathbf{2}}, \mathbf{x}_{\mathbf{1}}$
We use here the same approach as for $x_{1} \Perp y_{2} \mid y_{1}, x_{2}$. (By symmetry considerations, we could immediately see that the relation holds but let us write it out for clarity). We rewrite $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ as

$$
\begin{align*}
p\left(y_{1}, y_{2}, x_{1}, x_{2}\right) & =p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right) \tag{S.9}\\
& \left.\left.=\left[p\left(y_{2} \mid x_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{2}\right) p\left(x_{1}\right)\right)\right]\left[p\left(y_{1} \mid x_{1}\right) \phi\left(y_{1}, y_{2}\right)\right]\right) \tag{S.10}\\
& =\tilde{\phi}_{A}\left(x_{2}, x_{1}, y_{2}\right) \tilde{\phi}_{B}\left(y_{1}, y_{2}, x_{1}\right) \tag{S.11}
\end{align*}
$$

With (4), we have that $x_{2} \Perp y_{1} \mid y_{2}, x_{1}$.
(b) Is there an undirected perfect map for the independencies satisifed by $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$?

Solution. We write

$$
p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)
$$

as a Gibbs distribution

$$
\begin{align*}
p\left(y_{1}, y_{2}, x_{1}, x_{2}\right) & =\phi_{1}\left(y_{1}, x_{1}\right) \phi_{2}\left(y_{2}, x_{2}\right) \phi_{3}\left(y_{1}, y_{2}\right) \phi_{4}\left(x_{1}, x_{2}\right) \tag{S.12}\\
\phi_{1}\left(y_{1}, x_{1}\right) & =p\left(y_{1} \mid x_{1}\right) p\left(x_{1}\right) \tag{S.13}\\
\phi_{2}\left(y_{2}, x_{2}\right) & =p\left(y_{2} \mid x_{2}\right) p\left(x_{2}\right) \tag{S.14}\\
\phi_{3}\left(y_{1}, y_{2}\right) & =\phi\left(y_{1}, y_{2}\right) \tag{S.15}\\
\phi_{4}\left(x_{1}, x_{2}\right) & =n\left(x_{1}, x_{2}\right) \tag{S.16}
\end{align*}
$$

Visualising it as an undirected graph gives an I-map:

While the graph implies $x_{1} \Perp y_{2} \mid y_{1}, x_{2}$ and $x_{2} \Perp y_{1} \mid y_{2}, x_{1}$, the independency $x_{1} \Perp x_{2}$ is not represented. Hence the graph is not a perfect map. Note further that removing any edge would result in a graph that is not an I-map for $\mathcal{I}(p)$ anymore. Hence the graph is a minimal I-map for $\mathcal{I}(p)$ but that we cannot obtain a perfect I-map.
(c) Is there a directed perfect map for the independencies satisifed by $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$?

Solution. We construct directed minimal I-maps for $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)$ for different orderings as explained in the lecture. We will see that they do not represent all independencies in $\mathcal{I}(p)$ and hence that they are not perfect I-maps.
To guarantee unconditional independence of x_{1} and x_{2}, the two variables must come first in the orderings (either x_{1} and then x_{2} or the other way around).
If we use the ordering $x_{1}, x_{2}, y_{1}, y_{2}$, and that

- $x_{1} \Perp x_{2}$
- $y_{2} \Perp x_{1} \mid y_{1}, x_{2}$, which is $y_{2} \Perp \operatorname{pre}\left(y_{2}\right) \backslash \pi \mid \pi$ for $\pi=\left(y_{1}, x_{2}\right)$
are in $\mathcal{I}(p)$, we obtain the following directed minimal I-map:

The graphs misses $x_{2} \Perp y_{1} \mid y_{2}, x_{1}$.
If we use the ordering $x_{1}, x_{2}, y_{2}, y_{1}$, and that

- $x_{1} \Perp x_{2}$
- $y_{1} \Perp x_{2} \mid x_{1}, y_{2}$, which is $y_{1} \Perp \operatorname{pre}\left(y_{1}\right) \backslash \pi \mid \pi$ for $\pi=\left(x_{1}, y_{2}\right)$
are in $\mathcal{I}(p)$, we obtain the following directed minimal I-map:

The graph misses $x_{1} \Perp y_{2} \mid y_{1}, x_{2}$.
Moreover, the graphs imply a directionality between y_{1} and y_{2}, or a direct influence of x_{1} on y_{2}, or of x_{2} on y_{1}, in contrast to the original modelling goals.
(d) (optional, not examinable) In the lecture, we have the following factor graph for $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$

Use the separation rules for factor graphs to verify that we can find all independence relations. The separation rules are (see Barber, section 4.4.1, or the original paper by Brendan Frey: https: // arxiv. org/abs/1212. 2486):
"If all paths are blocked, the variables are conditionally independent. A path is blocked if one or more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.
2. One of the variables or factors in the path has two incoming edges that are part of the path (variable or factor collider), and neither the variable or factor nor any of its descendants are in the conditioning set."

Remarks:

- "one or more of the following" should best be read as "one of the following".
- "incoming edges" means directed incoming edges
- the descendants of a variable of factor node are all the variables that you can reach by following a path (containing directed or directed edges, but for directed edges, all directions have to be consistent)
- In the graph we have dashed directed edges: they do count when you determine the descendants but they do not contribute to paths. For example, y_{1} is a descendant of the $n\left(x_{1}, x_{2}\right)$ factor node but $x_{1}-n-y_{2}$ is not a path.

Solution. $\quad \mathbf{x}_{1} \Perp \mathbf{x}_{2}$
There are two paths from x_{1} to x_{2} marked with red and blue below:

Both the blue and red path are blocked by condition 2 .
$\mathbf{x}_{1} \Perp \mathbf{y}_{2} \mid \mathbf{y}_{1}, \mathbf{x}_{\mathbf{2}}$
There are two paths from x_{1} to y_{2} marked with red and blue below:

The observed variables are marked in blue. For the red path, the observed x_{2} blocks the path (condition 1). Note that the $n\left(x_{1}, x_{2}\right)$ node would be open by condition 2 . The blue path is blocked by condition 1 too. In directed graphical models, the y_{1} node would be open, but here while condition 2 does not apply, condition 1 still applies (note the one or more of ... in the separation rules), so that the path is blocked.
$\mathbf{x}_{\mathbf{2}} \Perp \mathbf{y}_{1} \mid \mathbf{y}_{\mathbf{2}}, \mathbf{x}_{1}$
There are two paths from x_{2} to y_{1} marked with red and blue below:

The same reasoning as before yields the result.
Finally note that x_{1} and x_{2} are not independent given y_{1} or y_{2} because the upper path through $n\left(x_{1}, x_{2}\right)$ is not blocked whenever y_{1} or y_{2} are observed (condition 2).

Credit: this example is discussed in the original paper by B. Frey (Figure 6).

