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Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

p(x1, . . . , x5) ∝ φ12(x1, x2)φ13(x1, x3)φ14(x1, x4)φ23(x2, x3)φ25(x2, x5)φ45(x4, x5)

(a) Visualise it as an undirected graph.

Solution. We draw a node for each random variable xi. There is an edge between two
nodes if the corresponding variables co-occur in a factor.
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(b) What are the neighbours of x3 in the graph?

Solution. The neighbours are all the nodes for which there is a single connecting edge.
Thus: ne(x3) = {x1, x2}. (Note that sometimes, we may denote ne(x3) by ne3.)

(c) Do we have x3 ⊥⊥ x4 | x1, x2?

Solution. Yes. The conditioning set {x1, x2} equals ne3, which is also the Markov blan-
ket of x3. This means that x3 is conditionally independent of all the other variables given
{x1, x2}, i.e. x3 ⊥⊥ x4, x5 | x1, x2, which implies that x3 ⊥⊥ x4 | x1, x2. (One can also use
graph separation to answer the question.)

(d) What is the Markov blanket of x4?

Solution. The Markov blanket of a node in a undirected graphical model equals the set
of its neighbours: MB(x4) = ne(x4) = ne4 = {x1, x5}. This implies, for example, that
x4 ⊥⊥ x2, x3 | x1, x5.

(e) On which minimal set of variables A do we need to condition to have x1 ⊥⊥ x5 | A?

Solution. We first identify all trails from x1 to x5. There are three such trails: (x1, x2, x5),
(x1, x3, x2, x5), and (x1, x4, x5). Conditioning on x2 blocks the first two trails, conditioning
on x4 blocks the last. We thus have: x1 ⊥⊥ x5 | x2, x4, so that A = {x2, x4}.

Exercise 2. Factorisation and independencies for undirected graphical models

We here consider the graph in Figure 1.

(a) What is the set of Gibbs distributions that are induced by the graph?
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Figure 1: Graph for Exercise 2

Solution. The graph in Figure 1 has four maximal cliques:

(x1, x2, x4) (x1, x3, x4) (x3, x4, x5) (x4, x5, x6)

The Gibbs distributions are thus

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x1, x3, x4)φ3(x3, x4, x5)φ4(x4, x5, x6)

(b) Let p be a pdf that factorises according to the graph. Can we expect that p(x3|x2, x4) = p(x3|x4)?

Solution. p(x3|x2, x4) = p(x3|x4) means that x3 ⊥⊥ x2 | x4. We can use the graph to
check whether this generally holds for pdfs that factorise according to the graph. There
are multiple trails from x3 to x2, including the trail (x3, x1, x2), which is not blocked by x4.
From the graph, we thus cannot conclude that x3 ⊥⊥ x2 | x4, and p(x3|x2, x4) = p(x3|x2)
will generally not hold (the relation may hold for some carefully defined factors φi).

(c) Explain why x2 ⊥⊥ x5 | x1, x3, x4, x6 holds.

Solution. The distribution that factorises according to the graph satisfies the pairwise
Markov property. Since x2 and x5 are not neighbours, and x1, x3, x4, x6 are the remaining
nodes in the graph, the independence relation follows from the pairwise Markov property.

(d) Assume you would like to approximate E(x1x2x5 | x3, x4), i.e. the expected value of the product of
x1, x2, and x5 given x3 and x4, with a sample average. Do you need to have joint observations for
all five variables x1, . . . , x5?

Solution. In the graph, all trails from {x1, x2} to x5 are blocked by {x3, x4}, so that
x1, x2 ⊥⊥ x5 | x3, x4. We thus have

E(x1x2x5 | x3, x4) = E(x1x2 | x3, x4)E(x5 | x3, x4).

Hence, we only need joint observations of (x1, x2, x3, x4) and (x3, x4, x5). Variables (x1, x2)
and x5 do not need to be jointly measured.

Exercise 3. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The
probability density or mass functions over d random variables x1, . . . , xd then take the form

p(x1, . . . , xd) ∝
∏
i≤j

φij(xi, xj)

These models are typically called pairwise Markov networks.
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(a) Let p(x1, . . . , xd) ∝ exp
(
− 1

2x
>Ax− b>x

)
where A is symmetric and x = (x1, . . . , xd)>. What

are the corresponding factors φij for i ≤ j?

Solution. Denote the (i, j)-th element of A by aij . We have

x>Ax =
∑
ij

aijxixj (S.1)

=
∑
i<j

2aijxixj +
∑
i

aiix
2
i (S.2)

where the second line follows from A> = A. Hence,

−1

2
x>Ax− b>x = −1

2

∑
i<j

2aijxixj −
1

2

∑
i

aiix
2
i −

∑
i

bixi (S.3)

so that

φij(xi, xj) =

{
exp (−aijxixj) if i < j

exp
(
−1

2aiix
2
i − bixi

)
if i = j

(S.4)

For x ∈ Rd, the distribution is a Gaussian with A equal to the inverse covariance matrix.
For binary x, the model is known as Ising model or Boltzmann machine. For xi ∈ {−1, 1},
x2i = 1 for all i, so that the aii are constants that can be absorbed into the normalisation
constant. This means that for xi ∈ {−1, 1}, we can work with matrices A that have zeros
on the diagonal.

(b) For p(x1, . . . , xd) ∝ exp
(
− 1

2x
>Ax− b>x

)
, show that xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj} if the

(i, j)-th element of A is zero.

Solution. The previous question showed that we can write p(x1, . . . , xd) ∝
∏

i≤j φij(xi, xj)
with potentials as in Equation (S.4). Consider two variables xi and xj for fixed (i, j). They
only appear in the factorisation via the potential φij . If aij = 0, the factor φij becomes
a constant, and no other factor contains xi and xj , which means that there is no edge
between xi and xj if aij = 0. By the pairwise Markov property it then follows that
xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj}.
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