	Probabilistic Modelling and Reasoning	
THE UNIVERSITY JEDINBURGH	Solutions for Tutorial 2 — Additional	Spring 2020
w informatics	Practice	Michael Gutmann

Exercise 1. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables $\mathbf{v} = (v_1, \dots, v_n)^\top$ and $\mathbf{h} = (h_1, \dots, h_m)^\top$ with a probability mass function equal to

$$p(\mathbf{v}, \mathbf{h}) \propto \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right),$$
 (1)

where **W** is a $n \times m$ matrix. Both the v_i and h_i take values in $\{0,1\}$. The v_i are called the "visibles" variables since they are assumed to be observed while the h_i are the hidden variables since it is assumed that we cannot measure them.

(a) Use graph separation to show that the joint conditional $p(\mathbf{h}|\mathbf{v})$ factorises as

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i=1}^{m} p(h_i|\mathbf{v}).$$

Solution. Figure 1 on the left shows the undirected graph for $p(\mathbf{v}, \mathbf{h})$ with n = 3, m = 2. We note that the graph is bi-partite: there are only direct connections between the h_i and the v_i . Conditioning on \mathbf{v} thus blocks all trails between the h_i (graph on the right). This means that the h_i are independent from each other given \mathbf{v} so that

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i=1}^{m} p(h_i|\mathbf{v}).$$

Figure 1: Left: Graph for $p(\mathbf{v}, \mathbf{h})$. Right: Graph for $p(\mathbf{h}|\mathbf{v})$

(b) Show that

$$p(h_i = 1 | \mathbf{v}) = \frac{1}{1 + \exp\left(-b_i - \sum_j W_{ji} v_j\right)}$$

$$\tag{2}$$

where W_{ji} is the (ji)-th element of \mathbf{W} , so that $\sum_{j} W_{ji}v_{j}$ is the inner product (scalar product) between the *i*-th column of \mathbf{W} and \mathbf{v} .

Solution. For the conditional pmf $p(h_i|\mathbf{v})$ any quantity that does not depend on h_i can be considered to be part of the normalisation constant. A general strategy is to first work out $p(h_i|\mathbf{v})$ up to the normalisation constant and then to normalise it afterwards.

We begin with $p(\mathbf{h}|\mathbf{v})$:

$$p(\mathbf{h}|\mathbf{v}) = \frac{p(\mathbf{h}, \mathbf{v})}{p(\mathbf{v})}$$
(S.1)

$$\propto p(\mathbf{h}, \mathbf{v})$$
 (S.2)

$$\propto p(\mathbf{n}, \mathbf{v}) \tag{S.2}$$

$$\propto \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right) \tag{S.3}$$

$$\propto \exp\left(\mathbf{v}^{\top}\mathbf{W}\mathbf{h} + \mathbf{b}^{\top}\mathbf{h}\right) \tag{S.4}$$

$$\propto \exp\left(\sum_{i}\sum_{j}v_{j}W_{ji}h_{i} + \sum_{i}b_{i}h_{i}\right)$$
(S.5)

As we are interested in $p(h_i|\mathbf{v})$ for a fixed *i*, we can drop all the terms not depending on that h_i , so that

$$p(h_i|\mathbf{v}) \propto \exp\left(\sum_j v_j W_{ji} h_i + b_i h_i\right)$$
 (S.6)

Since h_i only takes two values, 0 and 1, normalisation is here straightforward. Call the unnormalised pmf $\tilde{p}(h_i | \mathbf{v})$,

$$\tilde{p}(h_i|\mathbf{v}) = \exp\left(\sum_j v_j W_{ji} h_i + b_i h_i\right).$$
(S.7)

We then have

$$p(h_i|\mathbf{v}) = \frac{\tilde{p}(h_i|\mathbf{v})}{\tilde{p}(h_i = 0|\mathbf{v}) + \tilde{p}(h_i = 1|\mathbf{v})}$$
(S.8)

$$= \frac{\tilde{p}(h_i|\mathbf{v})}{1 + \exp\left(\sum_j v_j W_{ji} + b_i\right)}$$
(S.9)

$$= \frac{\exp\left(\sum_{j} v_{j} W_{ji} h_{i} + b_{i} h_{i}\right)}{1 + \exp\left(\sum_{j} v_{j} W_{ji} + b_{i}\right)},$$
(S.10)

so that

$$p(h_i = 1 | \mathbf{v}) = \frac{\exp\left(\sum_j v_j W_{ji} + b_i\right)}{1 + \exp\left(\sum_j v_j W_{ji} + b_i\right)}$$
(S.11)

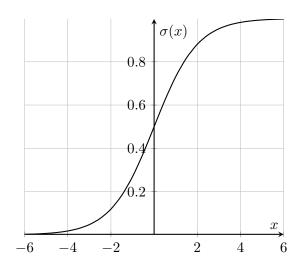
$$= \frac{1}{1 + \exp\left(-\sum_{j} v_{j} W_{ji} - b_{i}\right)}.$$
 (S.12)

The probability $p(h = 0 | \mathbf{v})$ equals $1 - p(h_i = 1 | \mathbf{v})$, which is

$$p(h_i = 0 | \mathbf{v}) = \frac{1 + \exp\left(\sum_j v_j W_{ji} + b_i\right)}{1 + \exp\left(\sum_j v_j W_{ji} + b_i\right)} - \frac{\exp\left(\sum_j v_j W_{ji} + b_i\right)}{1 + \exp\left(\sum_j v_j W_{ji} + b_i\right)}$$
(S.13)

$$= \frac{1}{1 + \exp\left(\sum_{j} W_{ji} v_{j} + b_{i}\right)}$$
(S.14)

The function $x \mapsto 1/(1 + \exp(-x))$ is called the logistic function. It is a sigmoid function and is thus sometimes denoted by $\sigma(x)$. (For other versions of the sigmoid function, see https://en.wikipedia.org/wiki/Sigmoid_function)



With that notation, we have

$$p(h_i = 1 | \mathbf{v}) = \sigma \left(\sum_j W_{ji} v_j + b_i \right).$$

(c) Use a symmetry argument to show that

$$p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_i|\mathbf{h}) \quad and \quad p(v_i = 1|\mathbf{h}) = \frac{1}{1 + \exp\left(-a_i - \sum_{j} W_{ij}h_j\right)}$$

Solution. Since $\mathbf{v}^{\top}\mathbf{W}\mathbf{h}$ is a scalar we have $(\mathbf{v}^{\top}\mathbf{W}\mathbf{h})^{\top} = \mathbf{h}^{\top}\mathbf{W}^{\top}\mathbf{v} = \mathbf{v}^{\top}\mathbf{W}\mathbf{h}$, so that

$$p(\mathbf{v}, \mathbf{h}) \propto \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right)$$
 (S.15)

$$\propto \exp\left(\mathbf{h}^{\top}\mathbf{W}^{\top}\mathbf{v} + \mathbf{b}^{\top}\mathbf{h} + \mathbf{a}^{\top}\mathbf{v}\right).$$
 (S.16)

To derive the result, we note that **v** and *a* now take the place of **h** and **b** from before, and that we now have \mathbf{W}^{\top} rather than **W**. In Equation (2), we thus replace h_i with v_i , b_i with a_i , and W_{ji} with W_{ij} to obtain $p(v_i = 1 | \mathbf{h})$. In terms of the sigmoid function, we have

$$p(v_i = 1 | \mathbf{h}) = \sigma \left(\sum_j W_{ij} h_j + a_i \right).$$

Note that while $p(\mathbf{v}|\mathbf{h})$ factorises, the marginal $p(\mathbf{v})$ does generally not. The marginal

 $p(\mathbf{v})$ can here be obtained in closed form up to its normalisation constant.

$$p(\mathbf{v}) = \sum_{\mathbf{h} \in \{0,1\}^m} p(\mathbf{v}, \mathbf{h})$$
(S.17)

$$= \frac{1}{Z} \sum_{\mathbf{h} \in \{0,1\}^m} \exp\left(\mathbf{v}^\top \mathbf{W} \mathbf{h} + \mathbf{a}^\top \mathbf{v} + \mathbf{b}^\top \mathbf{h}\right)$$
(S.18)

$$= \frac{1}{Z} \sum_{\mathbf{h} \in \{0,1\}^m} \exp\left(\sum_{ij} v_i h_j W_{ij} + \sum_i a_i v_i + \sum_j b_j h_j\right)$$
(S.19)

$$= \frac{1}{Z} \sum_{\mathbf{h} \in \{0,1\}^m} \exp\left(\sum_{j=1}^m h_j \left[\sum_i v_i W_{ij} + b_j\right] + \sum_i a_i v_i\right)$$
(S.20)

$$= \frac{1}{Z} \sum_{\mathbf{h} \in \{0,1\}^m} \prod_{j=1}^m \exp\left(h_j \left[\sum_i v_i W_{ij} + b_j\right]\right) \exp\left(\sum_i a_i v_i\right)$$
(S.21)

$$= \frac{1}{Z} \exp\left(\sum_{i} a_{i} v_{i}\right) \sum_{\mathbf{h} \in \{0,1\}^{m}} \prod_{j=1}^{m} \exp\left(h_{j} \left[\sum_{i} v_{i} W_{ij} + b_{j}\right]\right)$$
(S.22)

$$= \frac{1}{Z} \exp\left(\sum_{i} a_{i} v_{i}\right) \sum_{h_{1},\dots,h_{m}} \prod_{j=1}^{m} \exp\left(h_{j} \left[\sum_{i} v_{i} W_{ij} + b_{j}\right]\right)$$
(S.23)

Importantly, each term in the product only depends on a single h_j , so that by sequentially applying the distributive law, we have

$$\sum_{h_1,\dots,h_m} \prod_{j=1}^m \exp\left(h_j \left[\sum_i v_i W_{ij} + b_j\right]\right) = \left[\sum_{h_1,\dots,h_{m-1}} \prod_{j=1}^{m-1} \exp\left(h_j \left[\sum_i v_i W_{ij} + b_j\right]\right)\right] \cdot \sum_{h_m} \exp\left(h_m \left[\sum_i v_i W_{im} + b_m\right]\right)$$
(S.24)
$$= \dots$$

$$=\prod_{j=1}^{m}\left[\sum_{h_j}\exp\left(h_j\left[\sum_i v_i W_{ij} + b_j\right]\right)\right]$$
(S.25)

Since $h_j \in \{0, 1\}$, we obtain

$$\sum_{h_j} \exp\left(h_j \left[\sum_i v_i W_{ij} + b_j\right]\right) = 1 + \exp\left(\sum_i v_i W_{ij} + b_j\right)$$
(S.26)

and thus

$$p(\mathbf{v}) = \frac{1}{Z} \exp\left(\sum_{i} a_{i} v_{i}\right) \prod_{j=1}^{m} \left[1 + \exp\left(\sum_{i} v_{i} W_{ij} + b_{j}\right)\right].$$
 (S.27)

Note that in the derivation of $p(\mathbf{v})$ we have not used the assumption that the visibles v_i are binary. The same expression would thus obtained if the visibles were defined in another space, e.g. the real numbers.

While $p(\mathbf{v})$ is written as a product, $p(\mathbf{v})$ does not factorise into terms that depend on subsets of the v_i . On the contrary, all v_i are present in all factors. Since $p(\mathbf{v})$ does not

factorise, computing the normalising Z is expensive. For binary visibles $v_i \in \{0, 1\}, Z$ equals

$$Z = \sum_{\mathbf{v} \in \{0,1\}^n} \exp\left(\sum_i a_i v_i\right) \prod_{j=1}^m \left[1 + \exp\left(\sum_i v_i W_{ij} + b_j\right)\right]$$
(S.28)

where we have to sum over all 2^n configurations of the visibles **v**. This is computationally expensive, or even prohibitive if n is large $(2^{20} = 1048576, 2^{30} > 10^9)$. Note that different values of a_i, b_i, W_{ij} yield different values of Z. (This is a reason why Z is called the partition function when the a_i, b_i, W_{ij} are free parameters.)

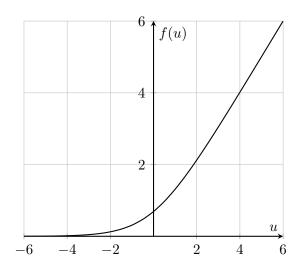
It is instructive to write $p(\mathbf{v})$ in the log-domain,

$$\log p(\mathbf{v}) = \log Z + \sum_{i=1}^{n} a_i v_i + \sum_{j=1}^{m} \log \left[1 + \exp\left(\sum_i v_i W_{ij} + b_j\right) \right], \quad (S.29)$$

and to introduce the nonlinearity f(u),

$$f(u) = \log [1 + \exp(u)],$$
 (S.30)

which is called the softplus function and plotted below. The softplus function is a smooth approximation of $\max(0, u)$, see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_networks)



With the softplus function f(u), we can write $\log p(\mathbf{v})$ as

$$\log p(\mathbf{v}) = \log Z + \sum_{i=1}^{n} a_i v_i + \sum_{j=1}^{m} f\left(\sum_i v_i W_{ij} + b_j\right).$$
 (S.31)

The parameter b_j plays the role of a threshold as shown in the figure below. The terms $f(\sum_i v_i W_{ij} + b_j)$ can be interpreted in terms of feature detection. The sum $\sum_i v_i W_{ij}$ is the inner product between \mathbf{v} and the *j*-th column of \mathbf{W} , and the inner product is largest if \mathbf{v} equals the *j*-th column. We can thus consider the columns of \mathbf{W} to be feature-templates, and the $f(\sum_i v_i W_{ij} + b_j)$ a way to measure how much of each feature is present in \mathbf{v} . Further, $\sum_i v_i W_{ij} + b_j$ is also the input to the sigmoid function when computing $p(h_j = 1|\mathbf{v})$. Thus, the conditional probability for h_j to be one, i.e. "active", can be considered to be an indicator of the presence of the *j*-th feature (*j*-th column of \mathbf{W}) in the input \mathbf{v} . If v is such that $\sum_i v_i W_{ij} + b_j$ is large for many j, i.e. if many features are detected, then $f(\sum_i v_i W_{ij} + b_j)$ will be non-zero for many j, and $\log p(\mathbf{v})$ will be large.

