Probabilistic Modelling and Reasoning Tutorial 1 — Notes

These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the tutorial sheet.

Topological ordering (x_1, \ldots, x_d) — For all x_i, x_j connected by a directed edge $x_i \to x_j$, x_i should appear before x_j in the ordering

Ordered Markov property — A distribution $p(x_1, ..., x_d)$ satisfies the ordered Markov property if $\forall x_i \exists \pi_i \text{ s.t. } x_i \perp \text{pre}_i \setminus \pi_i \mid \pi_i$, i.e. $p(x_i|\text{pre}_i) = p(x_i|\pi_i)$, where:

- pre_i is the set of nodes before x_i in a topological ordering
- π_i is a minimal subset of pre_i

For example, in graphs $\pi_i = pa_i$ (parents of x_i)

DAG connections

Connection	Serial	Diverging	Converging
Graph	$x \longrightarrow z \longrightarrow y$	$x \leftarrow z \rightarrow y$	x $\longrightarrow z$ $\longleftarrow y$
p(x,y)	$x \not\perp\!\!\!\perp y$ – trail active	$x \not\perp \!\!\! \perp y$ – trail active	$x \perp \!\!\! \perp y$ – trail blocked
p(x,y z)	$x \perp \!\!\!\perp y \mid z$ – trail blocked	$x \perp \!\!\!\perp y \mid z$ – trail blocked	$x \not\perp \!\!\! \perp y \mid z$ – trail active
			$x \not\perp \!\!\! \perp y \mid desc(z)$ – trail active

D-separation — $X \perp\!\!\!\perp Y \mid Z$ if every trail from $\forall x \in X$ to $\forall y \in Y$ is blocked by Z

Note, d-separation is not complete – it may not capture all independencies

Global directed Markov property — A distribution $p(x_1, ..., x_d)$ satisfies the global directed Markov property if all independencies asserted by d-separation hold for $p(x_1, ..., x_d)$.

Local directed Markov property — A distribution $p(x_1, ..., x_d)$ satisfies the local directed Markov property if $x_i \perp \text{nondesc}(x_i) \setminus \text{pa}_i \mid \text{pa}_i \text{ holds for all } i$, i.e. $p(x_i|\text{nondesc}(x_i)) = p(x_i|\text{pa}_i)$ for all i.

Markov blanket MB (x_i) — The minimal set of variables MB (x_i) that makes x_i independent from all other variables.

$$x_i \perp \!\!\!\perp X \setminus \{x_i \cup \mathrm{MB}(x_i)\} \mid \mathrm{MB}(x_i)$$
 (1)

$$MB(x_i) = parents(x_i) \cup children(x_i) \cup \{parents(children(x_i)) \setminus x_i\}$$
 (2)