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Recap

We can decompose the log marginal of any joint distribution
into a sum of two terms:

» the free energy and
» the KL divergence between the variational and the conditional
distribution

Variational principle: Maximising the free energy with respect
to the variational distribution allows us to (approximately)
compute the (log) marginal and the conditional from the joint.

We applied the variational principle to inference and learning
problems.

For parameter estimation in presence of unobserved variables:
Coordinate ascent on the free energy leads to the (variational)
EM algorithm.
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Program

1. HMM parametrisation and the learning problem
2. Options for learning the parameters

3. Learning the parameters by EM
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Program

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
o Constraints on the parameters
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Hidden Markov model

Specified by

» DAG (representing the independence assumptions)

» Transition distribution p(h;j|h;i_1)
» Emission distribution p(v;|h;)

» |nitial state distribution p(h;)
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The classical inference problems

» Classical inference problems:

» Filtering: p(h¢|vyi.t)
» Smoothing: p(h:|vi.,) where t < u
» Prediction: p(h:|vi.,) and/or p(v¢|vi.,) where t > u
» Most likely hidden path (Viterbi alignment):
argmax, p(h1.¢|vi.e)
» Inference problems can be solved by message passing.

» Requires that the transition, emission, and initial state
distributions are known.

Michael Gutmann Learning for Hidden Markov Models

6/ 25



Learning problem

» Data: D ={D1,...,Dp}, where each D; is a sequence of
visibles of length d, i.e.

Dj = (Vl(J), v oey V((j.’l))
» Assumptions:

» All variables are discrete: h; € {1,... K}, v; € {1,..., M}.
» Stationarity

» Parametrisation:
» Transition distribution is parametrised by the matrix A

p(h;i = k|lhi_1 = k'; A) = A
» Emission distribution is parametrised by the matrix B
p(vi = m|h; = k;B) = B, «
» Initial state distribution is parametrised by the vector a
p(h1 = k;a) = a
» Task: Use the data D to learn A, B, and a
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Learning problem

» Since A, B, and a represent (conditional) distributions, the
parameters are constrained to be non-negative and to satisfy

K K
Y plhi=klhiea=K)=> Acw =1 forall K
=1 k=1

M M
> p(vi = mlhj = k) = Z Bmk=1  forall k
m=1 =

k

Z hl — k) Z di — 1

k=1

» Note: Much of what follows holds more generally for HMMs
and does not use the stationarity assumption or that the h;
and v; are discrete random variables.

» The parameters together will be denoted by 6.
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Program

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
o Constraints on the parameters
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Program

2. Options for learning the parameters
o Learning by gradient ascent on the log-likelihood or by EM
o Comparison
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Options for learning the parameters

» The model p(h,v;8) is normalised but we have unobserved
variables.
90|d]

» Option 1: Simple gradient ascent on the log-likelihood

Onew = Oolg + € Z IEj’p(h|Dj;l9o|d) [V@ |Og p(h, Dj; 0)
j=1

see slides Intractable Likelihood Functions
» Option 2: EM algorithm

Onew = argmax Z Ep(hD;044) [l0g p(h, Dj; 0)]

o =

see slides Variational Inference and Learning

» For HMMs, both are possible (necessary posteriors can be
computed with sum-product message passing)
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Options for learning the parameters

Option 1: Onew = Oqig + € Z;:l ]Ep(h|Dj;00|d) [Ve log p(h, Dj; 0)

90|d]
Option 2: Opew = argmaxy ZJ’.;I Ep(h’Dj;gold) [log p(h, Dj; 0)]
» Similarities:

» Both require computation of the posterior expectation.
» |n opt 2, assume the “M" step is performed by gradient ascent,

0' =6+ ¢ ) Epnp,0.) [Volog p(h, D;; 0)]

Jj=1

where 0 is initialised with 0.4, and the final 8" gives O, .
If only one gradient step is taken, option 2 becomes option 1.

» Differences:

» Unlike option 2, option 1 requires re-computation of the
posterior after each ¢ update of @, which may be costly.

> In some cases (including HMMs), the “M" /argmax step can be
performed analytically in closed form.
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Program

3. Learning the parameters by EM
o E-step
o M-step
o EM (Baum-Welch) algorithm
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The EM objective function

» Denote the objective in the EM algorithm by J(0,80,4),

J(H7 90|d) — Z I[-}j’p(l‘lu)J,90|d) [log p(h7 Djv 0)]
j=1
» Expected log-likelihood after filling-in the missing data

» We show next that for the HMM model in general, the full
posteriors p(h|Dj; 8,4) are not needed but just

p(hi, hi—1 | Dj; 001d)  p(hi | Dji Oola).

They can be obtained by the alpha-beta recursion
(sum-product algorithm).

» Posteriors need to be computed for each observed sequence
D;j, and need to be re-computed after updating 6.
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The EM objective function

» The HMM model factorises as
d
p(h,v; 8) = p(hi;a)p(va|h1; B) | | p(hilhi—1; A)p(vilhi; B)
=2

> For sequence D;, we have

log p(h, Dj; 8) = log p(h1; a) + log p(v{ | hr; B)+

d
S "log p(hilhi—1; A) + log p(v”|h;; B)

=2
» Since

Ep(hD;:604) [108 P(h1: @)] = Ep(,p;:0,4) [log p(h1; a)]
Ep(hmj;edd) [|0g P(hi|hi—1; A)] — Ep(h,-,h,-_1|2>j;00|d) [|Og P(hi|hi—1; A)]
Ep(hD;:040) ['05% p(v|hi; B)} = Ep(h|D;:60004) ['Og p(v|hi; B)}

we do not need the full posterior but only the marginal posteriors
and the joint of the neighbouring variables.
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The EM objective function

With the factorisation (independencies) in the HMM model, the
objective function thus becomes

J(0,001d) =D Ephp;:0,4) [log p(h, Dj; 0)]
=1

— Z IE‘ﬁj’P(hl|Dj:49o|o|) [|Og p(hl; a)]"‘
j=1

n

=

p(hi,hi—1|Dj;0.14) [|Og p(h"‘h"_l; A)]—l_

S

Ep(h,"Dj;90|d) |:|Og p(V/(J)’hh B):|
1

|
(Y

'ﬂ'
—t

.M Q ||.M Q
N

1

J
In the derivation so far we have not yet used the assumed
parametrisation of the model. We insert these assumptions next.
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The term for the initial state distribution

» We have assumed that
p(hlzk;a):ak k:].,...,K
which we can write as

p(hi;a) =[] 2, "
k

(like for the Bernoulli model, see slides Basics of Model-Based Learning)

» The log pmf is thus
log p(hy; a) Z 1(h1 = k) log ax
k

» Hence

Eop(h[D;:0.a) 108 P(h1;@)] = D " B ps:0,4) [1(1 = k)] log ax
P

= ZP = k|Dj; Oo14) log a
K
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https://www.inf.ed.ac.uk/teaching/courses/pmr/17-18/assets/slides/slides09.pdf

The term for the transition distribution

» We have assumed that
p(hi = klhi—1 = k'; A) = Ak ks k.k=1,...K
which we can write as
p(hilhi—1; A) =] A,]i(:f:k’h"_lzk/)

k,k’
(see slides Basics of Model-Based Learning)
> Further:
log p(hilhi—1; A) = > 1(hi = k, hi—1 = k') log Ay i

K,k
> Hence E,p, h,_1|D;:604) [108 P(hilhi-1; A)] equals
Y Eophihi1|Dyi04g) [L(hi = k, hi_1 = K')] log Ay s
K,k

= p(hi = k. hi1 = K'|Ds; ola) log A
k, k'
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The term for the emission distribution

We can do the same for the emission distribution.
With

p(vi|hi; B) H Bll(v, m,hi=k) H BIL(V, m)1(hi=k)
we have

B p(hiD;ji001a) ['Og p(v)|h; B)} = 1(v?) = m)p(h; = k|Dj, Ooid) 10g Bm

m, k
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E-step for discrete-valued HMM

» Putting all together, we obtain the EM objective function for
the HMM with discrete visibles and hiddens.

J(6,0014) =D > p(h1 = k|Dj; Ooiq) log ax+
=1 K

n d
:S:S:p(hl — k7 hi—l — k/‘DJ, Hold) lOgAk,k’—l_
Jj=1i=2 k,k’

S‘S‘S‘ﬂ )p(hi = k|Dj, 0014) log B k

Jj=1i=1 m,k

» The objectives for a, and the columns of A and B decouple.

» Does not decouple in separate objectives for all parameters
because of the constraint that the elements of a have to sum
to one, and that the columns of A and B have to sum to one.
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M-step

We discuss the details for the maximisation with respect to a.
The other cases are done equivalently.

Optimisation problem:

mz?xz; zk: p(h1 = k|Dj; O414) log ay
J:

subject to a, > 0 Zak =1
k

The non-negativity constraint could be handled by
re-parametrisation, but the constraint is here not active (the
objective is not defined for ax < 0) and can be dropped.

The normalisation constraint can be handled by using the
methods of Lagrange multipliers (see e.g. Barber Appendix A.6).
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M-step

> Lagrangian: > 77, >, p(h1 = k|Dj; Ocia) log ax — A(>_, ak — 1)
» The derivative with respect to a specific a; is

1
dj

> p(h1 = i|Dj; Ooia) A

j=1

» Gives the necessary condition for optimality

1 & .
aj = X Zp(hl — I’Dj; 90|d)
Jj=1

» The derivative with respect to A gives back the constraint
Sa=1
i

> Set A =323 7 4 p(h1 = i|Dj; Ooiq) to satisfy the constraint.
» The Hessian of the Lagrangian is negative definite, which
shows that we have found a maximum.

Michael Gutmann Learning for Hidden Markov Models 22 /25



M-step
> Since ) . p(h1 = i|Dj; Oo1q) = 1, we obtain A = n so that
1 n
= > p(h1 = k|Dj; O41a)
j=1

Average of all posteriors of h; obtained by message passing.

» Equivalent calculations give

ZJ'?:1 Z,qzz p(hi =k, hi_1 = k'|Dj; Oo14)
Dk 27:1 Z,q:z p(hi = k, hi_1 = K'|Dj; Oo14)

Ak ke =

and

S S 1w = m)p(hi = KD Oaia)

Bmk
St S (v = mYp(h: = k|Dj; Boia)

Y

Inferred posteriors obtained by message passing are averaged over
different sequences D; and across each sequence (stationarity).

Michael Gutmann Learning for Hidden Markov Models 23 /25



EM for discrete-valued HMM (Baum-Welch algorithm)

Given parameters 04

1. For each sequence D; compute the posteriors
p(hi, hi—1 | Dj; Ooid) p(hi | Dj; Ooid)
using the alpha-beta recursion (sum-product algorithm)

2. Update the parameters

1 n
ax nE p(h1 = k|Dj; Ooia)

j=1
D i S8, p(hi = k, hi_1 = K'|Dj; O1a)
D kD S, p(hi = k, hi_1 = K'|Dj; O1a)
g 22 1w = mp(h = KIDj; Oa)
TS L 1(v?) = mYp(h = k|Dj; Baia)

Repeat step 1 and 2 using the new parameters for 0,4. Stop e.g. if

Ak k=

change in parameters is less than a threshold.
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Program recap

1. HMM parametrisation and the learning problem
o Assumptions: discrete case and stationarity
o Constraints on the parameters

2. Options for learning the parameters
o Learning by gradient ascent on the log-likelihood or by EM
e Comparison

3. Learning the parameters by EM
o E-step
o M-step
o EM (Baum-Welch) algorithm
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