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Recap

Assuming a factorisation / set of statistical independencies
allowed us to efficiently represent the pdf or pmf of random
variables

Factorisation can be exploited for inference

» by using the distributive law
» by re-using already computed quantities

Inference for general factor graphs (variable elimination)
Inference for factor trees

Sum-product and max-product message passing
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1. Markov models

2. Inference by message passing



Program

1. Markov models
e Markov chains
e Transition distribution
e Hidden Markov models
e Emission distribution
o Mixture of Gaussians as special case
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Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.
» speech modelling (speech recognition)
» text modelling (natural language processing)
» gene sequence modelling (bioinformatics)
» spike train modelling (neuroscience)

» object tracking (robotics)
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Markov chains

» Chain rule with ordering xq,..., x4

d
p(X17 s 7Xd) — H p(Xi‘Xla SR 7Xi—1)
i=1

» |f p satisfies ordered Markov property, the number of variables
in the conditioning set can be reduced to a subset

(W g {Xl, “e ,X,'_l}
» Not all predecessors but only subset 7; is “relevant” for x;.
» [-th order Markov chain: m; = {x;_1,...,xj—1}

d
p(X17 s 7Xd) — H p(Xi’Xi—La s 7Xi—1)
i=1

» 1st order Markov chain: 7; = {x;_1}

d
p(X1;. .., Xd) = H p(xi|xi-1)
i=1
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Markov chain — DAGs

Chain rule

Second-order Markov chain

K

First-order Markov chain
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Vector-valued Markov chains

» While not explicitly discussed, the graphical models extend to
vector-valued variables
» Chain rule with ordering x1,..., Xy

p(Xl, SRR ,Xd) — H p(xi’xla s 7xi—1)

» 1st order Markov chain:

P(Xla--- prl|xl 1
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Modelling time series

» Index i may refer to time t
» [-th order Markov chain of length T:

T
p(X17 s 7XT) — H p(Xt‘Xt—L7 R 7Xt—1)
t=1

Only the recent past of L time points x;_;,...,X¢_1 iS
relevant for x;

» 1st order Markov chain of length T:

-
pixt, - x7) = ][ p(xelxe-1)

t=1
Only the last time point x;_1 is relevant for x;.
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Transition distribution

(Consider 1st order Markov chain.)
> p(xi|xj—1) is called the transition distribution

» For discrete random variables, p(x;j|xi—1) is defined by a
transition matrix A’

p(X,' = k|X,'_1 — k’) — ;.(,k’

» For continuous random variables, p(x;|xj—1) is a conditional
pdf, e.g.

v — Flx 1))
p(xilxi 1) = ——— ~ exp (—( = 1)) )

>
270 207

for some function f;
» Homogeneous Markov chain: p(x;|x;_1) does not depend on i,

e.g. |
A=A oj=o0, fi=fF

» Inhomogeneous Markov chain: p(x;j|x;_1) does depend on i
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Hidden

Markov model

DAG:

> 1st order Markov chain on hidden (latent) variables h;.
» Each visible (observed) variable v; only depends on the

corresponding hidden variable h;
Factorisation

d
p(h1.q, vi:a) = p(va|h1)p(h1) [ | p(vilhi)p(hilhi-1)
=2
The visibles are d-connected if hiddens are not observed

Visibles are d-separated (independent) given the hiddens
The h; model/explain all dependencies between the v;
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Emission distribution

> p(v;|h;) is called the emission distribution

» Discrete-valued v; and h;:
p(vi|h;) can be represented as a matrix

» Discrete-valued v; and continuous-valued h;:
p(v;i|h;) is a conditional pmf.
» Continuous-valued v;: p(vj|h;) is a density

» As for the transition distribution, the emission distribution
p(vi|h;) may depend on i or not.

» |f neither the transition nor the emission distribution depend
on i, we have a stationary (or homogeneous) hidden Markov
model.
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Gaussian emission model with discrete-valued latents

» Special case: h; Il hj_1 ,and v; e R" h; € {1,... . K}

p(h = k) = pk

plvlh = k) =

e
| det 27X |1/2 P

<—%(V — i) T (v - .Uk))

for all h; and v;.

» DAG
() () ()
OO (4

» Corresponds to d iid draws from a Gaussian mixture model
with K mixture components

» Mean E|v|h = k] = p
» Covariance matrix V|v|h = k] = X,
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Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where
cluster membership at “time” i (the value of h;) generally depends
on cluster membership at “time” i — 1 (the value of h;_1).

1 - 1

Example for v; € R?, h; € {1,2,3}. Left: p(v|h = k). Right: samples

(Bishop, Figure 13.8)
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Program

1. Markov models
e Markov chains
e Transition distribution
e Hidden Markov models
e Emission distribution
o Mixture of Gaussians as special case
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Program

2. Inference by message passing
o Inference: filtering, prediction, smoothing, Viterbi
o Filtering: Sum-product message passing yields the
alpha-recursion from the HMM literature
e Smoothing: Sum-product message passing yields the
alpha-beta recursion from the HMM literature
o Sum-product message passing for prediction, inference of
most likely hidden path, and for inference of joint distributions
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The classical inference problems

(Considering the index i to refer to time t)

Filtering (Inferring the present) p(ht|vi.¢)
Smoothing  (Inferring the past) p(he|viy) t<u
Prediction (Inferring the future)  p(he|lviy) t>u

Most likely (Viterbi alignment) argmaxy,  P(h1:.¢|vi:t)
Hidden path |

For prediction, one is also often interested in p(v;|vy.,) for t > w.

(slide courtesy of David Barber)
Michael Gutmann HMM Exact Inference 17 /32



The classical inference problems

filtering
. X
. t
smoothing
S
prediction !
=SS
t

= denotes the extent of data
avallable

(slide courtesy of Chris Williams)
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Factor graph for hidden Markov model

DAG:
OENOEN OO
Factor graph:

ha|h h3|h
o(h) m A P(2.‘1) /h-\ p( 3.’ 2) /h\

(see tutorial 4)

p(vi|h) p(v2lh2) p(vs|hs3)
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Filtering p(h¢|vi.¢)

» When computing p(h¢|vi:t), the vi.p = (v, ..., v¢) are
assumed known and are kept fixed

» Factors p(vs|hs) depend on hs only (s =1,...,t).
» Different options (give the same results):

» Work with (combined) factors

¢s(hs, hs—1) o< p(vs|hs)p(hs|hs—1) and ¢1(h1) = p(va|h1)p(h1).
» Work with factors ¢s(hs, hs_1) = p(hs|hs_1), fs(hs) = p(vs|hs),

and ¢1(M) = p(M).

» Factor graph for second option

B G e

f1 & > f3 W fr W
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Filtering p(h¢|vi.¢)

Messages for p(ha|vi4)

o1 @2 ¢3 P4

n—— h ——m—— 1, ——m——{ 1y ——m——{ hs
O OO
fi A H» N ;3 I f, M

Marginal posterior:

p(he|vi:e) o< pg,—n, (he) s —n, (ht)
Messages:
> pf—sh(hi) = fi(hi) and pg, —p (1) = ¢1(h1)

> Nh1—>¢2(h1) — M¢1—>h1(h1) ' Nf1—>h1(h1)
> fgo—shy(12) = D2, d2(h2, h1)pin — g, (1)

> :u¢s—>hs(hs) — Zhs_l ¢s(h57 hs—l)ﬂhs_1—>¢s(hs—1)
> fihy—sdesr (Bs) = tg—ns(hs) - pf,—n,(hs)
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Filtering p(h¢|vi.¢)

®1 @2 ¢3 o
a—— 1 ——m——h, ——m——{ 1y —=—m——{

A

1N > i ; | 7 |

» Recursion:
Lhy—eo(h1) = @1(h1) - f1(h1)

Mgbs—)hs(hs) — Z ¢S(h57 hs—l)ﬂhs_1—>¢s(hs—1)
hs—l

Iuhs_>¢s+1(h5) — M¢s_>hs(h5) ) lufs—>hs(h5)
» |nserting the definition of the factors gives:
Hhy—¢,(h1) = p(h1) - p(vih)

:uqbs—>hs(hs) — Z p(hs‘hs—l)ﬂhs_l—ws(hs—l)
hs—l

fhy— o1 (Ns) = Hgs—n,(hs) - p(vs|hs)
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Filtering p(h¢|vi.¢)

¢1 @2 ®3 @4
-%@%-%@%-%@%-%@
O O

1 A » A s I » A

> Write recursion in terms of pp 4., only
P, (M) = p(h1) - p(vi|h1)

Nhs—>¢s+1(h5) = p(vs|hs) Z P(hS‘hs—l)Nh5_1—>¢s(hs—1)
hs—l

> Called “alpha-recursion”: With a(hs) = pth, ¢, (hs)
a(hy) = p(h) - p(vi|h1)

04(/75) — p(Vs’hs) Z P(hs‘hs—l)a(hs—l)
hs_1

» Marginal posterior:

P(ht‘Vl:t) X &(ht)
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Filtering p(ht‘ Vl:t) — more on the alpha-recursion

> ohs) = fth,—¢.,, (hs) is an effective factor.

> a(hi) = p(h1)p(vi|h1) = p(h1,v1) o< p(h|v1)

a(hr) 0% ®3 P4
) ) Q
.4@ N ho N h3 N hy
R
» For a(hs)
¢s—|—1
a(hs) I4® ] @7 .
|
fs i1

» \We now prove by induction that

Oé(hs) — p(h57 Vlzs) X P(hsyvl:s)

Michael Gutmann HMM Exact Inference 24 /32



Filtering p(ht‘ Vl:t) — more on the alpha-recursion

a(hs) = p(vs|hs) >y, P(hs|hs—1)o(hs—1)
» Independencies in the model: p(hs|hs_1) = p(hs|hs—1, v1:s—1)
» With a(hs—1) = p(hs—1, v1:s—1) (holds for s =2 1)

Z p(hs‘hs—l)@(hs—l) — Z p(hs|hs—17 V1:s—1)P(hs—17 Vl:s—l)
h5_1 hs—l

— Z p(h57 hS—17 Vl:s—l)
hs—l
— p(h57 Vl:s—l)

» Independencies in the model: p(vs|hs) = p(vs|hs, vi:s—1)

CV(hs) — p(Vs’ha V1:s—1)P(h57 V1:s—1)
p(h57 Vl:s)

which completes the proof.
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Filtering p(ht‘ Vl:t) — more on the alpha-recursion

» This kind of approach allows one to obtain the alpha-recursion
without message passing (see Barber).

» |Interpretation of the alpha-recursion in terms of “prediction
and correction”

a(hs) — P(Vs|hs) Z P(hs’hs—l)&(hs—l)
hs_1

= p(vs|hs)p(hs, vi:s—1)
o p(vs|hs) p(hs|vi:s—1)

7 \

correction  prediction

X P(hs‘Vl:s)

» The correction term updates the predictive distribution of hs
given vi.s_1 to include the new data vs.
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Smoothing p(h|vi.,), t < u

Consider:
» Hidden Markov model with variables (hy,..., hg, vi,..., V)
» Observed vi.4 = (v1,..., V)

> Interest: p(ha|vi.q)

1 o2 ®3 b4 o5 b6
\I/ fj/ \I/ \I/

fs A fs W fo

Factor graph with factors ¢; and f, ..., f; defined as before. Factors f5
and fs are: f5(hs, vs) = p(vs|hs) and fs(he, ve) = p(ve|he).
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Smoothing p(h|vi.,), t < u

> p(ha|vi.4) is given by incoming messages

p(halvi:a) o pigy sy (h2) ket hy (h2) b1y (2)

[ohy— 3 (h2)=a(h2)

» Denote ,LL¢3_>h2(h2) by /3(/’)2):
p(h2|vi:a) o< ah2)B(h2)

o1 ¢2 a(h) ¢3 on ®5
I_>h1_>l_>hggl%/h-3\<_lkh4el<_/h-5\
T L C IR T T
i W HL M M fo W f
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Smoothing p(h|vi.,), t < u

» We can compute S(hy) by sum-product message passing.
> Let 5(hs) = g, ;—h.(hs), then (see tutorial 5)

B(hy) = B(hs) =1
B(h3) = Zp(h4\h3)P(V4\h4)w

hy

P4 fa 1
B(hs) = ZP(hs+1’hS)/P(Vs%—l‘hs%—l)/@(hs%—l) (s <u)
ot ¢;:1 f;:l

» From independencies: 5(hs) = p(Vs+1:u|hs) (see Barber 23.2.3)

b1 ®2 a(hy) ¢3 P4 @5 ®6
D (e (D (DD %Q
5’75

; o) ST e ST A
[ |

fi W f, 3 W fa
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Smoothing p(h|vi.,), t < u

» Recursive computation of 3(hs) via message passing is known

as ‘'beta-recursion’” in the HMM literature
» Smoothing via “alpha-beta recursion”

p(ht‘ Vl:u) X CV(ht)ﬁ(ht)

Oé(hs) — P(Vs|hs) Z P(hs‘hs—l)&(hs—l)
hs_1

a(hy) = p(h1)p(vi|h1) o p(hi|vi)
B(hs) = Z p(hst1lhs)p(Vsi1lhsy1)B(hst1)
h

s+1

5(hu) =1

» Also known as forward-backward algorithm.

» Due to correspondence to message passing: Knowing all

a(hs), B(hs) <= knowing all marginals and all joints of
neighbouring latents given the observed data vi.,.
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Prediction, most likely hidden path, and joint distribution

» Sum-product algorithm can similarly be used for

» prediction: p(h¢|vi.,) and p(v¢|vi.,), with t > u
> inference of the most likely hidden path: argmax, p(h1.¢|v1.¢)
» computing pairwise marginals p(hs, hyy1|viy), u>tor u <t.

» Can be written in terms of a(h;) and 5(h;)

» See Barber Section 23.2

(does not use message passing)
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Program recap

1. Markov models
e Markov chains
e Transition distribution
e Hidden Markov models
e Emission distribution
e Mixture of Gaussians as special case

2. Inference by message passing
o Inference: filtering, prediction, smoothing, Viterbi
e Filtering: Sum-product message passing yields the alpha-recursion
from the HMM literature
e Smoothing: Sum-product message passing yields the alpha-beta
recursion from the HMM literature
e Sum-product message passing for prediction, inference of most
likely hidden path, and for inference of joint distributions
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