Exact Inference

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring Semester 2020

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = rac{\sum_{\mathbf{z}} p(\mathbf{x},\mathbf{y}_o,\mathbf{z})}{\sum_{\mathbf{x},\mathbf{z}} p(\mathbf{x},\mathbf{y}_o,\mathbf{z})}$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

► Issue 1: To specify p(x, y, z), we need to specify K^{3d} - 1 = 10¹⁵⁰⁰ - 1 non-negative numbers, which is impossible.

Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?

- Directed and undirected graphical models, factor graphs
- Factorisation and independencies

Recap

$$p(\mathbf{x}|\mathbf{y}_{o}) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z})}$$

▶ Issue 2: The sum in the numerator goes over the order of $K^d = 10^{500}$ non-negative numbers and the sum in the denominator over the order of $K^{2d} = 10^{1000}$, which is impossible to compute.

Topic 2: Exact inference Can we further exploit the assumptions on $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to efficiently compute the posterior probability or derived quantities?

- Note: we do not want to introduce new assumptions but exploit those that we made to deal with issue 1.
- Quantities of interest:
 - $p(\mathbf{x}|\mathbf{y}_o)$

- (marginal inference)
- $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x} | \mathbf{y}_o)$ (inference of most probable states)
- $\mathbb{E}[g(\mathbf{x}) | \mathbf{y}_o]$ for some function g (posterior expectations)

If not otherwise mentioned, we here assume discrete valued random variables whose joint pmf factorises as

$$p(x_1,\ldots,x_d) \propto \prod_{i=1}^m \phi_i(\mathcal{X}_i),$$

with
$$\mathcal{X}_i \subseteq \{x_1, \ldots, x_d\}$$
 and $x_i \in \{1, \ldots, K\}$.

Note:

- Includes case where (some of) the ϕ_i are conditionals
- The x_i could be categorical taking on maximally K different values.

- 1. Marginal inference by variable elimination
- 2. Marginal inference for factor trees (sum-product algorithm)
- 3. Inference of most probable states

Program

- 1. Marginal inference by variable elimination
 - Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
 - Variable elimination for general factor graphs
 - Structural changes to the graph due to variable elimination
 - The principles of variable elimination also apply to continuous random variables
- 2. Marginal inference for factor trees (sum-product algorithm)
- 3. Inference of most probable states

Example (full factorisation)

- Consider discrete-valued random variables $x_1, x_2, x_3 \in \{1, \dots, K\}$
- Assume pmf factorises $p(x_1, x_2, x_3) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)$
- Task: compute $p(x_1 = k)$ for $k \in \{1, \ldots, K\}$
- We can use the sum-rule

$$p(x_1 = k) = \sum_{x_2, x_3} p(x_1 = k, x_2, x_3)$$

Sum over K^2 terms for each k (value of x_1).

- Pre-computing p(x₁, x₂, x₃) for all K³ configurations and then computing the sum is neither necessary nor a good idea
- Exploit factorisation when computing $p(x_1 = k)$.

Example (full factorisation)

(sum rule)
$$p(x_1 = k) = \sum_{x_2, x_3} p(x_1 = k, x_2, x_3)$$
 (1)
(factorisation) $\propto \sum_{x_2} \sum_{x_3} \phi_1(k) \phi_2(x_2) \phi_3(x_3)$ (2)
(distr. law) $\propto \phi_1(k) \sum_{x_2} \sum_{x_3} \phi_2(x_2) \phi_3(x_3)$ (3)
(distr. law) $\propto \phi_1(k) \left[\sum_{x_2} \phi_2(x_2)\right] \left[\sum_{x_3} \phi_3(x_3)\right]$ (4)

Example (full factorisation)

$$p(x_1 = k) \propto \phi_1(k) \left[\sum_{x_2} \phi_2(x_2) \right] \left[\sum_{x_3} \phi_3(x_3) \right]$$
(5)

What's the point?

- Because of the factorisation (independencies) we don't need to evaluate and store the values of p(x₁, x₂, x₃) for all K³ configurations of the random variables.
- > 2 sums over K numbers vs. 1 sum over K^2 numbers
- Recycling/caching of already computed quantities: we only need to compute

$$\left[\sum_{x_2}\phi_2(x_2)\right]\left[\sum_{x_3}\phi_3(x_3)\right]$$

once; the value can be re-used when computing $p(x_1 = k)$ for different k.

Assume the pmf factorises as

$$p(x_1, \dots, x_d) \propto \begin{bmatrix} d^{-1} \\ \prod_{i=1}^{d} \phi_i(x_i, x_{i+1}) \end{bmatrix} \phi_d(x_d)$$

$$(x_1) \qquad \phi_1 \qquad \phi_2 \qquad \phi_{d-1} \qquad \phi_d$$

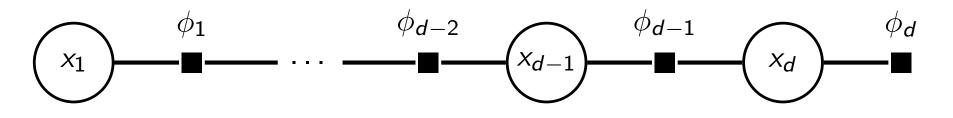
$$(x_1) \qquad \phi_2 \qquad \phi_{d-1} \qquad \phi_d$$

- ▶ Task: compute $p(x_1 = k)$ for $k \in \{1, ..., K\}$
- Non-scalable approach: Pre-compute p(x₁,...,x_d) for all K^d configurations and then use sum-rule
- Smarter: Exploit factorisation when applying the sum rule

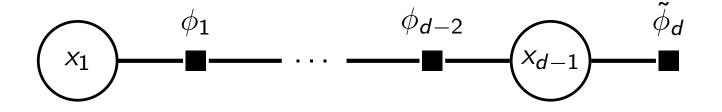
We have to sum over x_2, \ldots, x_d . Let's do x_d first

$$p(x_1, \dots, x_{d-1}) = \sum_{x_d} p(x_1, \dots, x_d)$$
(6)
(factorisation) $\propto \sum_{x_d} \left[\prod_{i=1}^{d-1} \phi_i(x_i, x_{i+1}) \right] \phi_d(x_d)$ (7)
 $\propto \sum_{x_d} \left[\prod_{i=1}^{d-2} \phi_i(x_i, x_{i+1}) \right] \phi_{d-1}(x_{d-1}, x_d) \phi_d(x_d)$ (8)
(by distr. law) $\propto \left[\prod_{i=1}^{d-2} \phi_i(x_i, x_{i+1}) \right] \underbrace{\sum_{x_d} \phi_{d-1}(x_{d-1}, x_d) \phi_d(x_d)}_{\tilde{\phi}_d(x_{d-1})$ (10)

Factor graph for $p(x_1, \ldots, x_d) \propto \left[\prod_{i=1}^{d-1} \phi_i(x_i, x_{i+1})\right] \phi_d(x_d)$

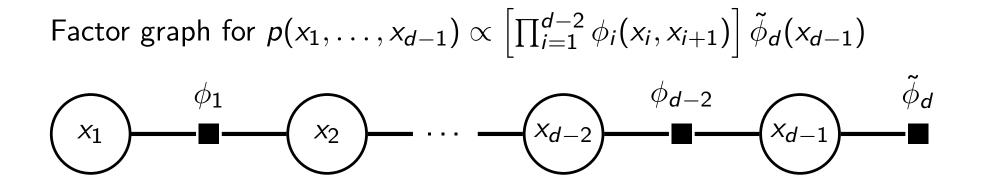


Factor graph for $p(x_1, \ldots, x_{d-1}) \propto \left[\prod_{i=1}^{d-2} \phi_i(x_i, x_{i+1})\right] \tilde{\phi}_d(x_{d-1})$



Next, sum over x_{d-1}

$$p(x_{1}, \dots, x_{d-2}) = \sum_{x_{d-1}} p(x_{1}, \dots, x_{d-1})$$
(11)
(factorisation) $\propto \sum_{x_{d-1}} \left[\prod_{i=1}^{d-2} \phi_{i}(x_{i}, x_{i+1}) \right] \tilde{\phi}_{d}(x_{d-1})$ (12)
 $\propto \sum_{x_{d-1}} \left[\prod_{i=1}^{d-3} \phi_{i}(x_{i}, x_{i+1}) \right] \phi_{d-2}(x_{d-2}, x_{d-1}) \tilde{\phi}_{d}(x_{d-1})$ (by distr. law) $\propto \left[\prod_{i=1}^{d-3} \phi_{i}(x_{i}, x_{i+1}) \right] \underbrace{\sum_{x_{d-1}} \phi_{d-2}(x_{d-2}, x_{d-1}) \tilde{\phi}_{d}(x_{d-1})}_{\tilde{\phi}_{d,d-1}(x_{d-2})$ total cost: $K \cdot K = K^{2}$
 $\propto \left[\prod_{i=1}^{d-3} \phi_{i}(x_{i}, x_{i+1}) \right] \tilde{\phi}_{d,d-1}(x_{d-2})$ (13)



Factor graph for

$$p(x_1, \ldots, x_{d-2}) \propto \left[\prod_{i=1}^{d-3} \phi_i(x_i, x_{i+1})\right] \tilde{\phi}_{d,d-1}(x_{d-2})$$

$$\overbrace{x_1}^{\phi_1} \overbrace{x_2}^{\phi_{d,d-1}} \overbrace{x_{d-2}}^{\phi_{d,d-1}}$$

- Continue eliminating the last (leaf) variable
- Each time we eliminate a variable, we need to
 - compute $\phi_i(x_i, x_{i+1})$ for all values of x_i and x_{i+1} (matrix with K^2 numbers)
 - sum over K numbers to compute the $\tilde{\phi}(x_i)$ for all K values of x_i (cost: $O(K^2)$)
- To compute $p(x_1 = k)$ we have to eliminate d 1 variables
- \Rightarrow Total cost for $p(x_1) : O((d-1)K^2) = O(dK^2)$

- Benefits of exploiting the factorisation
 - Linear growth in number of variables d: in contrast to exponential growth O(K^d) when factorisation is not exploited
 - Recycling/caching: most terms do not depend on x₁ and can be re-used when we compute p(x₁ = k) for different k (e.g. \$\tilde{\phi}_d\$, \$\tilde{\phi}_{d,d-1}\$ etc.)
- Chains have the special property that they stay a chain after a leaf variable is eliminated.
- More general factor trees have the same property, which we exploit in the sum-product algorithm.
- First: variable elimination for general factor graphs.

- Use the distributive law ab + ac = a(b + c) to exploit the factorisation (∑∏ → ∏∑): reduces the overall dimensionality of the domain of the factors in the sum and thereby the computational cost.
- 2. Recycle/cache results

Variable (bucket) elimination

Example task: Given $p(x_1, \ldots, x_d) \propto \prod_i^m \phi_i(\mathcal{X}_i)$ compute the marginal $p(\mathcal{X}_{target})$ for some $\mathcal{X}_{target} \subseteq \{x_1, \ldots, x_d\}$.

► Assume that at iteration k, you have the pmf over d^k = d - k variables X^k = (x_{i1},..., x_{idk}) that factorises as

$$p(X^k) \propto \prod_{i=1}^{m^k} \phi_i^k(\mathcal{X}_i^k)$$

- Decide which variable to eliminate. Call it x^* . $(x^* \in X^k, x^* \notin \mathcal{X}_{target})$
- Let X^{k+1} be equal to X^k with x^* removed. We have

(sum rule)
$$p(X^{k+1}) = \sum_{x^*} p(X^k)$$
 (14)
(factorisation) $\propto \sum_{x^*} \prod_{i=1}^{m^k} \phi_i^k(\mathcal{X}_i^k)$ (15)

Variable elimination (cont.)

$$p(X^{k+1}) \propto \sum_{x^*} \prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \prod_{i:x^* \in \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \qquad (16)$$

$$(\text{distr. law}) \propto \prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \sum_{x^*} \prod_{i:x^* \in \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \qquad (17)$$

$$\max \text{ factor } \tilde{\phi}_* \qquad (18)$$

where $\tilde{\mathcal{X}}_*$ is the union of all \mathcal{X}_i^k that contained x^* , with x^* removed

$$\tilde{\mathcal{X}}_{*} = \bigcup_{i:x^{*} \in \mathcal{X}_{i}^{k}} \left(\mathcal{X}_{i}^{k} \setminus x^{*} \right)$$
(19)

Variable elimination (cont.)

By re-labelling the factors and variables, we obtain

$$p(X^{k+1}) \propto \left[\prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k)\right] \tilde{\phi}_*(\tilde{\mathcal{X}}_*)$$
(20)
$$\propto \prod_{i=1}^{m^{k+1}} \phi_i^{k+1}(\mathcal{X}_i^{k+1}),$$
(21)

which has the same form as $p(X^k)$.

- Set k = k + 1 and decide which variable x^* to eliminate next.
- To compute p(X_{target}) stop when X^k = X_{target}, followed by normalisation.

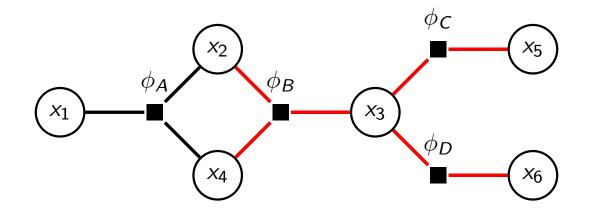
How to choose the elimination variable x^* ?

• When we marginalise over x^* , we generate a new factor $\tilde{\phi}_*$ that depends on

$$\tilde{\mathcal{X}}_{*} = \bigcup_{i:x^{*} \in \mathcal{X}_{i}^{k}} \left(\mathcal{X}_{i}^{k} \setminus x^{*} \right)$$
(22)

This is the set of variables with which x^* shares a factor node in the factor graph ("neighbours").

• Ex.: $p(x_1, \ldots, x_6) \propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \phi_D(x_3, x_6)$ If we eliminated $x^* = x_3$: $\tilde{\mathcal{X}}_* = \{x_2, x_4, x_5, x_6\}$



How to choose the elimination variable x^* ?

When we marginalise over x^* , we generate a new factor $\tilde{\phi}_*$ that depends on

$$\tilde{\mathcal{X}}_{*} = \bigcup_{i:x^{*} \in \mathcal{X}_{i}^{k}} \left(\mathcal{X}_{i}^{k} \setminus x^{*} \right)$$
(23)

This is the set of variables with which x^* shares a factor node in the factor graph ("neighbours").

- If $\tilde{\mathcal{X}}_*$ contains many variables, variable elimination becomes expensive in later iterations (exponential in size of largest \mathcal{X}^k).
- Optimal choice of x* is difficult (for details, see e.g. Koller, Section 9.4, not examinable)
- Heuristic: choose x* in a greedy way, e.g. the variable with the least number of neighbours in the factor graph (e.g. x₅ or x₆ in the example)

Computing conditionals

- The same approach can be used to compute conditionals.
- Example: Given

 $p(x_1,...,x_6) \propto \phi_A(x_1,x_2,x_4) \phi_B(x_2,x_3,x_4) \phi_C(x_3,x_5) \phi_D(x_3,x_6)$

assume you want to compute $p(x_1|x_3 = \alpha)$

We can write

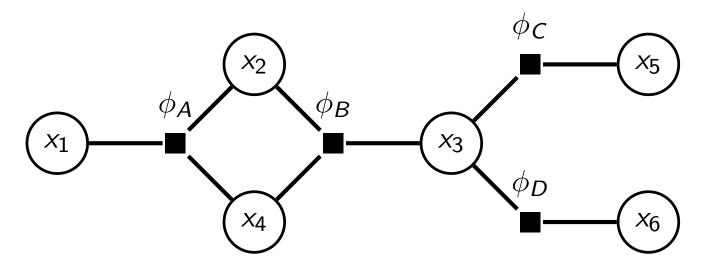
$$p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha) \propto p(x_1, x_2, x_3 = \alpha, x_4, x_5, x_6) \\ \propto \phi_A(x_1, x_2, x_4) \phi_B^{\alpha}(x_2, x_4) \phi_C^{\alpha}(x_5) \phi_D^{\alpha}(x_6)$$

and consider $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$ to be a pdf/pmf $\tilde{p}(x_1, x_2, x_4, x_5, x_6)$ defined up to the proportionality factor.

We can compute p(x₁|x₃ = α) = p̃(x₁) by applying variable elimination to p̃(x₁, x₂, x₄, x₅, x₆).

► Example:

 $p(x_1,...,x_6) \propto \phi_A(x_1,x_2,x_4) \phi_B(x_2,x_3,x_4) \phi_C(x_3,x_5) \phi_D(x_3,x_6)$



- Task: Compute $p(x_1, x_3)$
- Note the structural changes in the graph during variable elimination

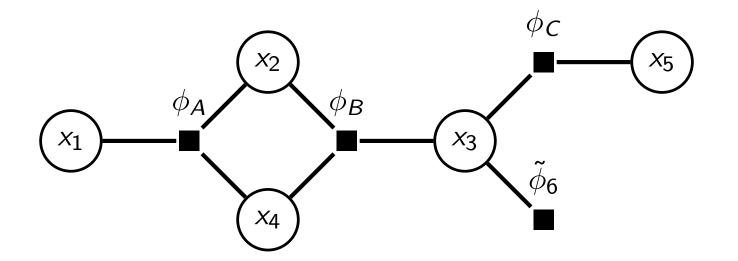
Task: Compute $p(x_1, x_3)$

First eliminate x₆

$$p(x_1, \dots, x_5) \propto \sum_{x_6} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \phi_D(x_3, x_6)$$

$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \sum_{x_6} \phi_D(x_3, x_6)$$

$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \tilde{\phi}_6(x_3)$$



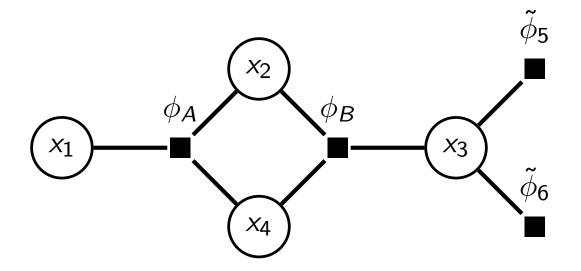
Task: Compute $p(x_1, x_3)$

Eliminate x₅

$$p(x_1, \dots, x_4) \propto \sum_{x_5} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \tilde{\phi}_6(x_3)$$

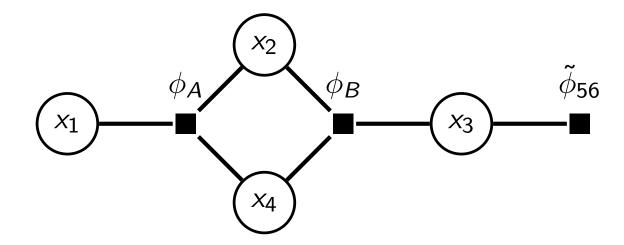
$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_6(x_3) \sum_{x_5} \phi_C(x_3, x_5)$$

$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_6(x_3) \tilde{\phi}_5(x_3)$$



Define $\tilde{\phi}_{56}(x_3) = \tilde{\phi}_6(x_3)\tilde{\phi}_5(x_3)$

 $p(x_1, ..., x_4) \propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_6(x_3) \tilde{\phi}_5(x_3)$ $\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_{56}(x_3)$



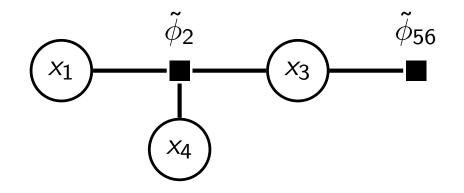
Task: Compute $p(x_1, x_3)$

Eliminate x_2

$$p(x_1, x_3, x_4) \propto \sum_{x_2} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_{56}(x_3)$$

$$\propto \tilde{\phi}_{56}(x_3) \sum_{x_2} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4)$$

$$\propto \tilde{\phi}_{56}(x_3) \tilde{\phi}_2(x_1, x_3, x_4)$$

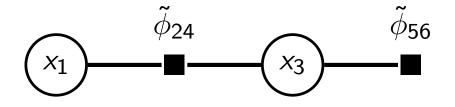


Task: Compute $p(x_1, x_3)$

Eliminate x₄

$$p(x_1, x_3) \propto \sum_{x_4} \tilde{\phi}_{56}(x_3) \tilde{\phi}_2(x_1, x_3, x_4)$$

 $\propto \tilde{\phi}_{56}(x_3) \sum_{x_4} \tilde{\phi}_2(x_1, x_3, x_4)$
 $\propto \tilde{\phi}_{56}(x_3) \tilde{\phi}_{24}(x_1, x_3)$



Normalisation:

$$p(x_1, x_3) = \frac{\tilde{\phi}_{56}(x_3)\tilde{\phi}_{24}(x_1, x_3)}{\sum_{x_1, x_3}\tilde{\phi}_{56}(x_3)\tilde{\phi}_{24}(x_1, x_3)}$$

Structural changes in the graph during variable elimination

- ► Eliminated leaf-variable and factor node → factor node
- Factors node depending on the same variables \rightarrow single factor node
- Factor nodes between neighbours of the target variable \rightarrow single factor node connecting all neighbours

What if we have continuous random variables?

- Conceptually, all stays the same but we replace sums with integrals
 - Simplifications due to distributive law remain valid
 - Caching of results remains valid
- In special cases, integral can be computed in closed form (e.g. Gaussian family)
- If not: need for approximations (see later)
- Approximations are also needed for discrete random variables with high-dimensional range (if K is large).

Program

- 1. Marginal inference by variable elimination
 - Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
 - Variable elimination for general factor graphs
 - Structural changes to the graph due to variable elimination
 - The principles of variable elimination also apply to continuous random variables
- 2. Marginal inference for factor trees (sum-product algorithm)
- 3. Inference of most probable states

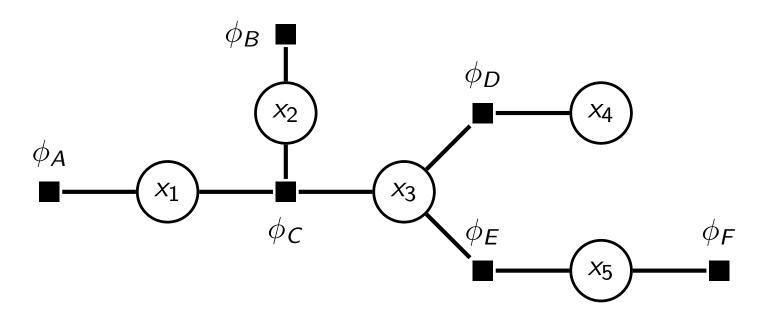
1. Marginal inference by variable elimination

- 2. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing

3. Inference of most probable states

Factor trees

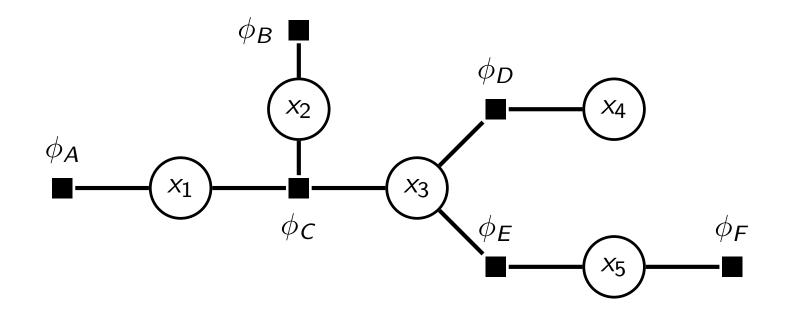
- We next consider the class of models (pmfs/pdfs) for which the factor graph is a tree
- Tree: graph where there is only one path connecting any two nodes (no loops!)
- Chain is an example of a factor tree.
- Useful property: the factor tree obtained after summing out a leaf variable is still a factor tree.



Variable elimination for factor trees

Task: Compute $p(x_1)$ for

 $p(x_1,...,x_5) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1,x_2,x_3)\phi_D(x_3,x_4)\phi_E(x_3,x_5)\phi_F(x_5)$



Sum out leaf-variable x_5

Task: Compute $p(x_1)$

$$p(x_{1},...,x_{4}) = \sum_{x_{5}} p(x_{1},...,x_{5})$$

$$\propto \sum_{x_{5}} \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\phi_{E}(x_{3},x_{5})\phi_{F}(x_{5})$$

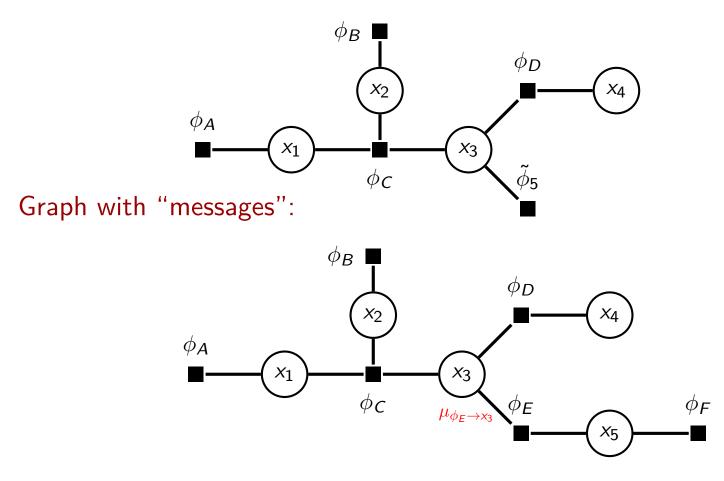
$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\sum_{x_{5}} \phi_{E}(x_{3},x_{5})\phi_{F}(x_{5})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\tilde{\phi}_{5}(x_{3})$$

$$\phi_{B} = \phi_{D} \qquad (x_{4}) = \phi_{D} \qquad (x_{4})$$

Visualising the computation

Graph with transformed factors:



Message:
$$\mu_{\phi_E \to x_3}(x_3) = \tilde{\phi}_5(x_3) = \sum_{x_5} \phi_E(x_3, x_5) \phi_F(x_5)$$

Effective factor for x_3 if all variables in the subtree attached to ϕ_E are eliminated (subtree does *not* include x_3)

Sum out leaf-variable x_4

Task: Compute $p(x_1)$

$$p(x_{1},...,x_{3}) = \sum_{x_{4}} p(x_{1},...,x_{4})$$

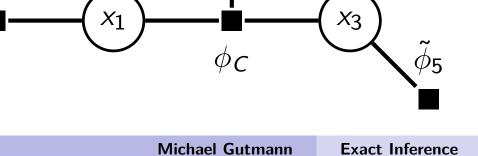
$$\propto \sum_{x_{4}} \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\tilde{\phi}_{5}(x_{3})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\tilde{\phi}_{5}(x_{3})\sum_{x_{4}} \phi_{D}(x_{3},x_{4})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\tilde{\phi}_{5}(x_{3})\tilde{\phi}_{4}(x_{3})$$

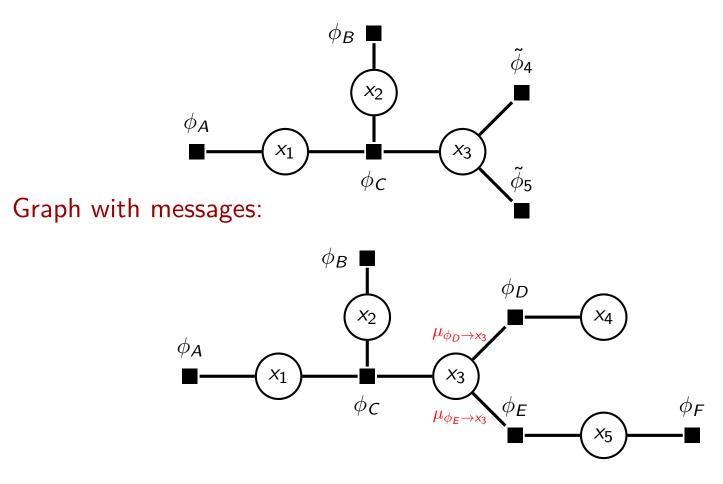
$$\phi_{B} = \tilde{\phi}_{4}$$

$$\tilde{\phi}_{4}$$



Visualising the computation

Graph with transformed factors:



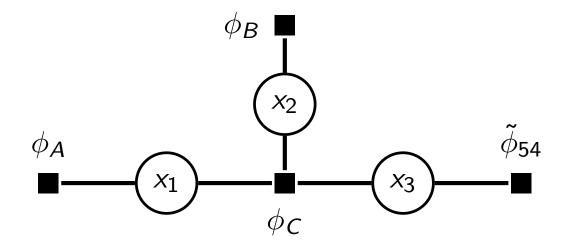
Message:
$$\mu_{\phi_D \to x_3}(x_3) = \tilde{\phi}_4(x_3) = \sum_{x_4} \phi_D(x_3, x_4)$$

Effective factor for x_3 if all variables in the subtree attached to ϕ_D are eliminated (subtree does *not* include x_3)

Simplify by multiplying factors with common domain

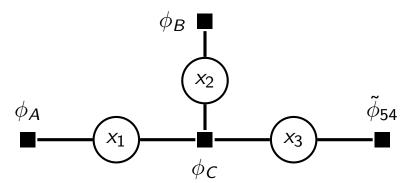
Task: Compute $p(x_1)$

$$p(x_1,\ldots,x_3) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1,x_2,x_3)\underbrace{\tilde{\phi}_5(x_3)\tilde{\phi}_4(x_3)}_{\tilde{\phi}_{54}(x_3)}$$
$$\propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1,x_2,x_3)\tilde{\phi}_{54}(x_3)$$

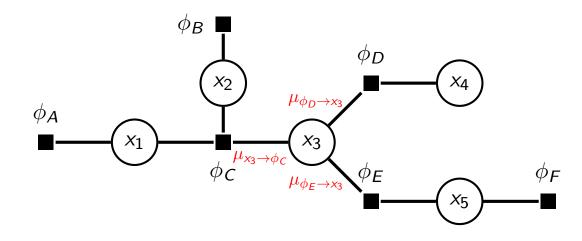


Visualising the computation

Graph with transformed factors:



Graph with messages:



Message: $\mu_{x_3 \to \phi_C}(x_3) = \tilde{\phi}_{54}(x_3) = \tilde{\phi}_4(x_3)\tilde{\phi}_5(x_3) = \mu_{\phi_D \to x_3}(x_3)\mu_{\phi_E \to x_3}(x_3)$

Effective factor for x_3 if all variables in the subtrees attached to x_3 are eliminated (subtrees do *not* include ϕ_c)

Sum out leaf-variable x_3

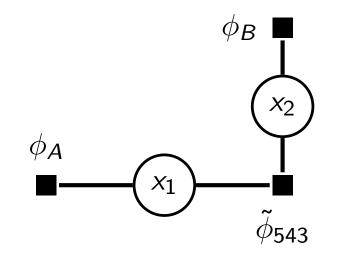
Task: Compute $p(x_1)$

$$p(x_1, x_2) = \sum_{x_3} p(x_1, x_2, x_3)$$

$$\propto \sum_{x_3} \phi_A(x_1) \phi_B(x_2) \phi_C(x_1, x_2, x_3) \tilde{\phi}_{54}(x_3)$$

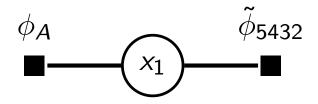
$$\propto \phi_A(x_1) \phi_B(x_2) \sum_{x_3} \phi_C(x_1, x_2, x_3) \tilde{\phi}_{54}(x_3)$$

$$\propto \phi_A(x_1) \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)$$



Sum out leaf-variable x_2 and normalise

$$p(x_1) = \sum_{x_2} p(x_1, x_2) \propto \sum_{x_2} \phi_A(x_1) \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)$$
$$\propto \phi_A(x_1) \sum_{x_2} \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)$$
$$\propto \phi_A(x_1) \tilde{\phi}_{5432}(x_1)$$



$$p(x_1) = \frac{\phi_A(x_1)\tilde{\phi}_{5432}(x_1)}{\sum_{x_1}\phi_A(x_1)\tilde{\phi}_{5432}(x_1)}$$

Alternative: sum out both x_2 and x_3

Since

$$\begin{split} \tilde{\phi}_{5432}(x_1) &= \sum_{x_2} \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2) \\ &= \sum_{x_2} \phi_B(x_2) \sum_{x_3} \phi_C(x_1, x_2, x_3) \tilde{\phi}_{54}(x_3) \\ &= \sum_{x_2, x_3} \phi_C(x_1, x_2, x_3) \phi_B(x_2) \tilde{\phi}_{54}(x_3) \end{split}$$

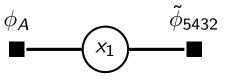
we obtain the same result by first summing out x_2 and then x_3 , or both at the same time.

In any case:

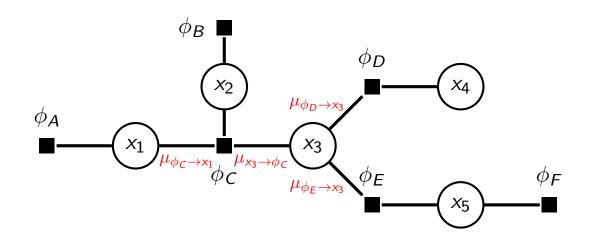
$$p(x_1) \propto \phi_A(x_1) \sum_{x_2, x_3} \phi_C(x_1, x_2, x_3) \phi_B(x_2) \tilde{\phi}_{54}(x_3)$$

Visualising the computation

Graph with transformed factors:



Graph with messages:



Message:

$$\mu_{\phi_{C} \to x_{1}}(x_{1}) = \tilde{\phi}_{5432}(x_{1}) = \sum_{x_{2}, x_{3}} \phi_{C}(x_{1}, x_{2}, x_{3}) \phi_{B}(x_{2}) \mu_{x_{3} \to \phi_{C}}(x_{3})$$

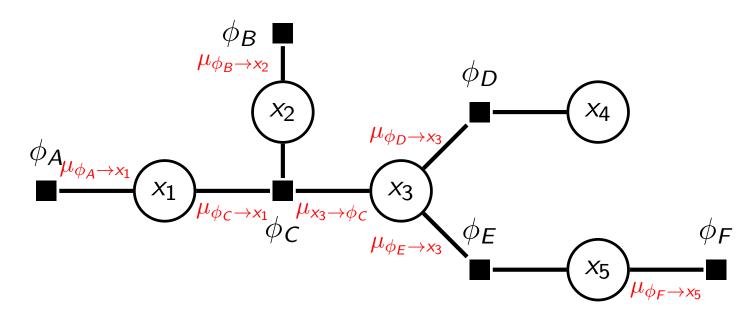
Effective factor for x_1 if all variables in the subtrees attached to ϕ_C are eliminated (subtrees do *not* include x_1)

Representing leaf-factors with messages

Since there are no variables "behind" the leaf-factors, all leaf-factors define effective factors themselves:

$$\mu_{\phi_A \to x_1}(x_1) = \phi_A(x_1)$$
$$\mu_{\phi_B \to x_2}(x_2) = \phi_B(x_2)$$
$$\mu_{\phi_F \to x_5}(x_5) = \phi_F(x_5)$$

We then obtain



Variables with single incoming messages copy the message

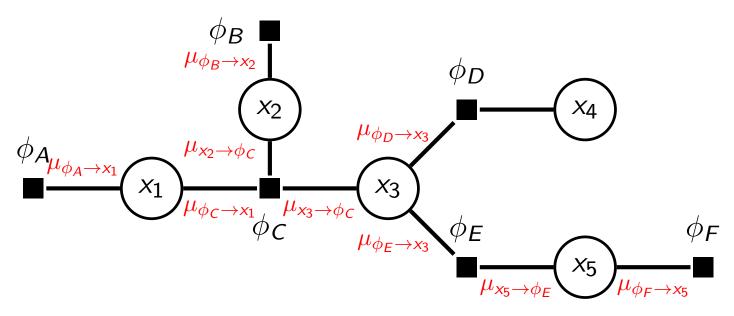
We had

$$\mu_{x_3 \to \phi_C}(x_3) = \mu_{\phi_D \to x_3}(x_3) \mu_{\phi_E \to x_3}(x_3)$$

which corresponded to simplifying the factorisation by multiplying effective factors defined on the same domain. Special cases:

$$\mu_{x_5 \to \phi_E}(x_5) = \mu_{\phi_F \to x_5}(x_5)$$
$$\mu_{x_2 \to \phi_C}(x_2) = \mu_{\phi_B \to x_2}(x_2)$$

We then obtain



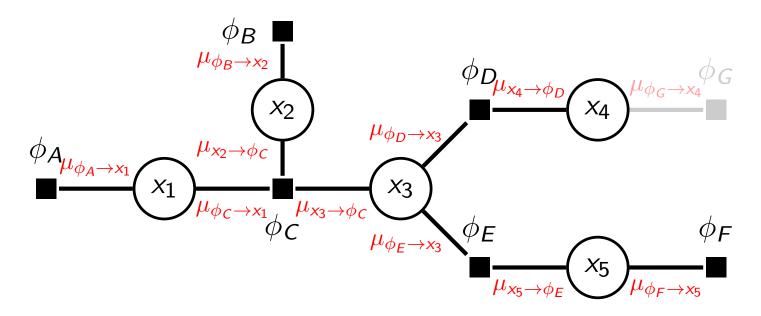
Messages from leaf variable nodes

What about x_4 ? We can consider $p(x_1, \ldots, x_5) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1, x_2, x_3)\phi_D(x_3, x_4)\phi_E(x_3, x_5)\phi_F(x_5)$ to include an additional factor $\phi_G(x_4) = 1$. We can thus set

$$\mu_{\phi_G \to x_4}(x_4) = 1$$

 $\mu_{x_4 \to \phi_D}(x_4) = \mu_{\phi_G \to x_4}(x_4) = 1$

Graph:

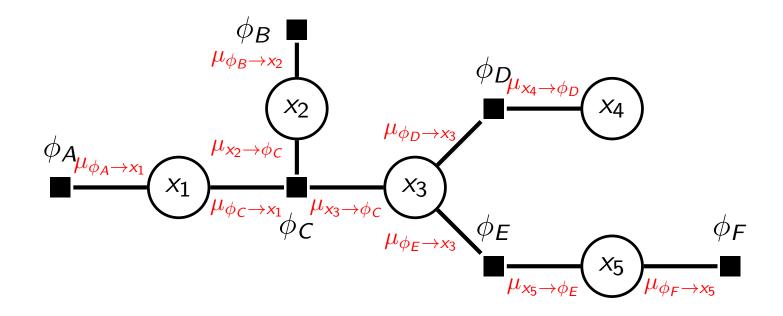


Single marginal from messages

We have seen that

$$egin{aligned} & eta(x_1) \propto \phi_{\mathcal{A}}(x_1) \widetilde{\phi}_{5432}(x_1) \ & \propto \mu_{\phi_{\mathcal{A}} o x_1}(x_1) \mu_{\phi_{\mathcal{C}} o x_1}(x_1) \end{aligned}$$

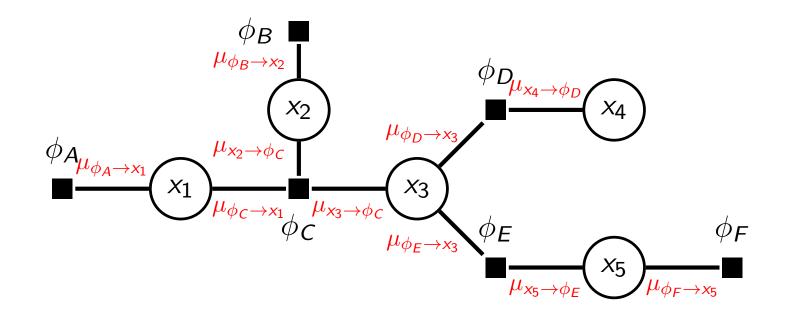
Marginal is proportional to the product of the incoming messages.



Single marginal from messages

Cost (due to properties of variable elimination):

- Linear in number of variables d, exponential in maximal number of variables attached to a factor node.
- Recycling: most messages do not depend on x₁ and can be re-used for computing p(x₁) for any value of x₁ (as well as for computing the marginal distribution of other variables, see next slides)



► We have seen that

$$egin{aligned} egin{aligned} p(x_1) \propto \phi_{\mathcal{A}}(x_1) \widetilde{\phi}_{5432}(x_1) \ &\propto \mu_{\phi_{\mathcal{A}} o x_1}(x_1) \mu_{\phi_{\mathcal{C}} o x_1}(x_1) \end{aligned}$$

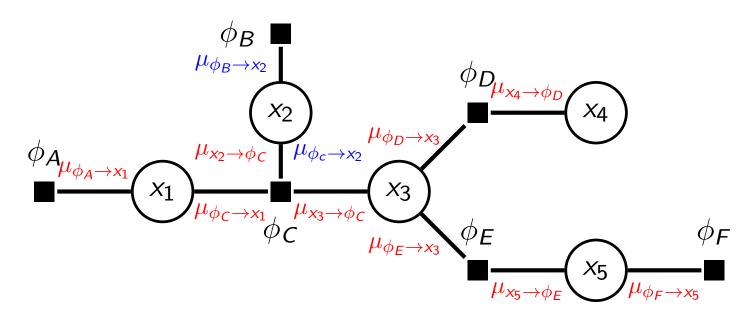
Remember: Messages are effective factors

This correspondence allows us to write down the marginal for other variables too. All we need are the incoming messages.

Further marginals from messages

- Example: For $p(x_2)$ we need $\mu_{\phi_B \to x_2}$ and $\mu_{\phi_C \to x_2}$
- ► $\mu_{\phi_B \to x_2}$ is known but $\mu_{\phi_C \to x_2}$ needs to be computed
- $\mu_{\phi_c \to x_2}$ corresponds to effective factor for x_2 if all variables of the subtrees attached to ϕ_c are eliminated.
- Can be computed from previously computed factors:

 $\mu_{\phi_A \to x_1}$ and $\mu_{x_3 \to \phi_C}$



Further marginals from messages

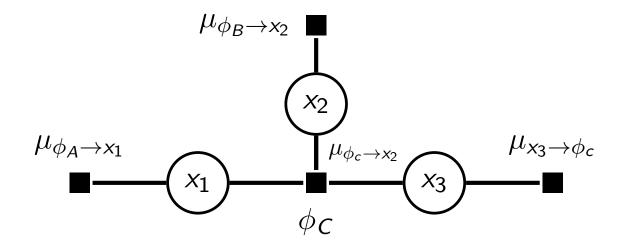
By definition of the messages, and their correspondence to effective factors, we have

 $p(x_1, x_2, x_3) \propto \phi_C(x_1, x_2, x_3) \mu_{\phi_A \rightarrow x_1}(x_1) \mu_{\phi_B \rightarrow x_2}(x_2) \mu_{x_3 \rightarrow \phi_C}(x_3)$

Eliminating x₁ and x₃ gives

$$p(x_2) \propto \mu_{\phi_B \to x_2}(x_2) \sum_{x_1, x_3} \phi_c(x_1, x_2, x_3) \mu_{x_3 \to \phi_C}(x_3) \mu_{\phi_A \to x_1}(x_1)$$

 $\propto \mu_{\phi_B \to x_2}(x_2) \mu_{\phi_C \to x_2}(x_2)$



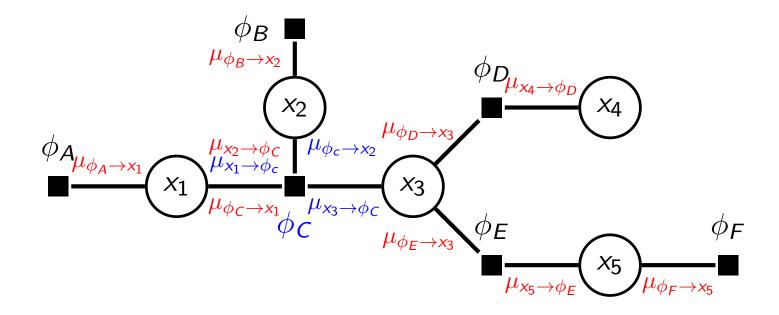
Further marginals from messages

We had

$$\mu_{\phi_{C}\to x_{2}}(x_{2}) = \sum_{x_{1},x_{3}} \phi_{c}(x_{1},x_{2},x_{3}) \mu_{x_{3}\to\phi_{C}}(x_{3}) \mu_{\phi_{A}\to x_{1}}(x_{1})$$

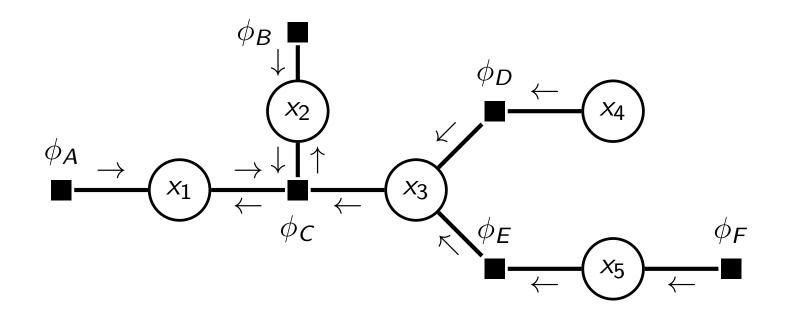
Introducing variable to factor message $\mu_{x_1 \to \phi_c} = \mu_{\phi_A \to x_1} = \phi_A$

$$\mu_{\phi_{C}\to x_{2}}(x_{2}) = \sum_{x_{1},x_{3}} \phi_{c}(x_{1},x_{2},x_{3}) \mu_{x_{3}\to\phi_{C}}(x_{3}) \mu_{x_{1}\to\phi_{c}}(x_{1})$$



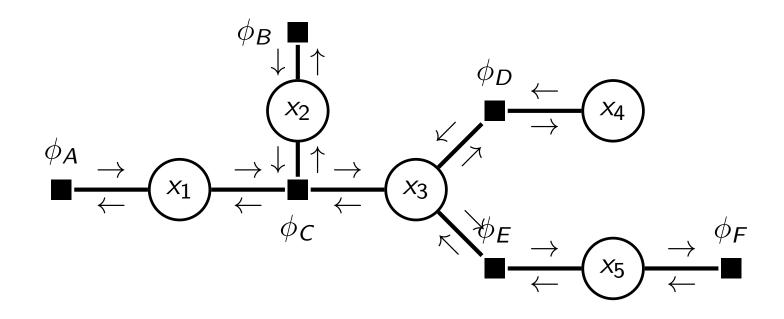
Using arrows to indicate the messages

Less cluttered representation using arrows for the messages



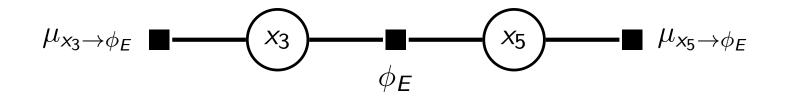
All (univariate) marginals from messages

- We can use the messages to compute the marginals of all variables in the graph.
- For the marginal of a variable x we need to know the incoming messages $\mu_{\phi_i \to x}$ from all factor nodes ϕ_i connected to x.
- This means that if each edge has a message in both directions, we can compute the marginals of all variables in the graph.



Joint distributions from messages

- The correspondence between messages and effective factors allows us to find the joint distribution for variables connected to the same factor node (neighbours).
- For example, we can compute $p(x_3, x_5)$ from messages
- ► The messages $\mu_{x_3 \to \phi_E}$ and $\mu_{x_5 \to \phi_E}$ correspond to effective factors attached to x_3 and x_5 , respectively.



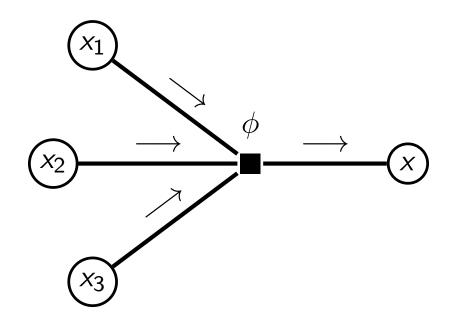
Factor graph corresponds to

$$p(x_3, x_5) \propto \phi_E(x_3, x_5) \mu_{x_3 \rightarrow \phi_E}(x_3) \mu_{x_5 \rightarrow \phi_E}(x_5)$$

"Rules" of message passing: factor to variable messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

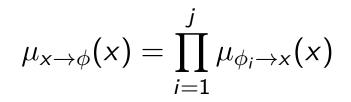
$$\mu_{\phi\to x}(x) = \sum_{x_1,\ldots,x_j} \phi(x_1,\ldots,x_j,x) \prod_{i=1}^j \mu_{x_i\to\phi}(x_i)$$

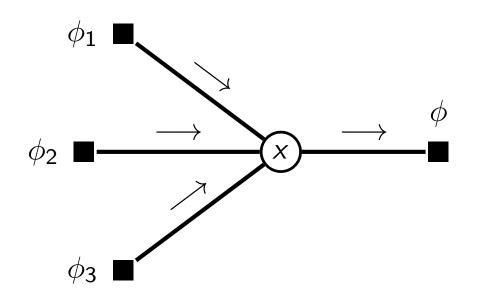


Rule corresponds to eliminating variables x_1, \ldots, x_j

"Rules" of message passing: variable to factor messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.



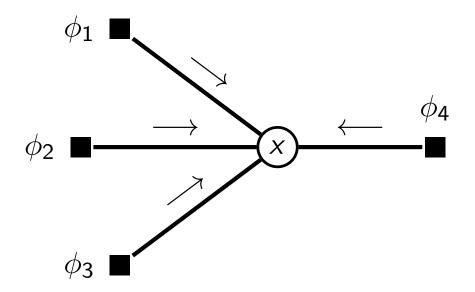


Rule corresponds to simplifying the factorisation by multiplying effective factors defined on the same domain.

"Rules" of message passing: univariate marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

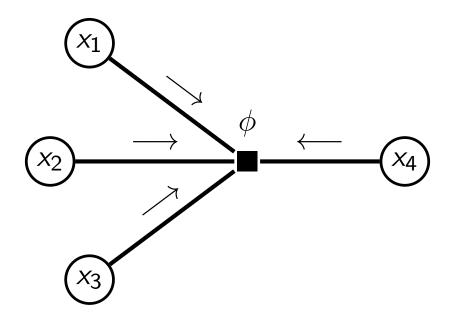
$$p(x) \propto \prod_{i=1}^{j} \mu_{\phi_i \to x}(x)$$



"Rules" of message passing: joint marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

$$p(x_1,\ldots,x_j) \propto \phi(x_1,\ldots,x_j) \prod_{i=1}^j \mu_{x_i \rightarrow \phi}(x_i)$$



In practice, it is better to work with log-messages (see Barber's paragraph on "log messages", p86)

Other names for the sum-product algorithm

- Other names for the sum-product algorithm include
 - sum-product message passing
 - message passing
 - belief propagation
- Whatever the name: it is variable elimination applied to factor trees

Assume $p(x_1, \ldots, x_d) \propto \prod_{i=1}^m \phi_i(\mathcal{X}_i)$, with $\mathcal{X}_i \subseteq \{x_1, \ldots, x_d\}$, can be represented as a factor tree.

- The sum-product algorithm allows us to compute
 - all univariate marginals $p(x_i)$.
 - ► all joint distributions p(X_i) for the variables X_i that are part of the same factor φ_i.
- Cost: If variables can take maximally K values and there are maximally M elements in the \mathcal{X}_i : $O(2dK^M) = O(dK^M)$

Applicability of the sum-product algorithm

- Factor graph must be a tree
- Can be used to compute conditionals (same argument as for variable elimination)
- May be used for continuous random variables (same caveats as for variable elimination)
- Same ideas can be used to compute $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$

If the factor graph is not a tree

- Use variable elimination
- Group variables together so that the factor graph becomes a tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)
- Pretend the factor graph is a tree and use message passing (loopy belief propagation; not examinable)
- Can you condition on some variables so that the conditional is a tree? Message passing can then be used to solve part of the inference problem.

Example: $p(x_1, x_2, x_3, x_4)$ is not a tree but $p(x_1, x_2, x_3 | x_4)$ is. Use law of total probability

$$p(x_1) = \sum_{x_4} \sum_{\substack{x_2, x_3 \\ \text{by message passing}}} p(x_1, x_2, x_3 | x_4) p(x_4)$$

(see Barber Section 5.3.2, "Loop-cut conditioning")

Summary

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables
- 2. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing

1. Marginal inference by variable elimination

2. Marginal inference for factor trees (sum-product algorithm)

3. Inference of most probable states

- Maximisers of the marginals \neq maximiser of joint
- We can use the distributive law max(*ab*, *ac*) = *a* max(*b*, *c*) to exploit the factorisation
- Max-product algorithm and back-tracking

Other inference tasks

- So far: given a joint distribution p(x), find marginals or conditionals over variables
- Other common inference task:
 - Find a setting of the variables that maximises $p(\mathbf{x})$, i.e.

 $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$

Find the corresponding value of $p(\mathbf{x})$, i.e.

 $\max_{\mathbf{x}} p(\mathbf{x})$

Note: the argmax, p(x) task here includes argmax, p̃(x|y_o), which is known as maximum a-posteriori (MAP) estimation or inference.

Maximisers of the marginals \neq maximiser of joint

- The sum-product algorithm gives us the univariate marginals p(x_i) for all variables x₁,..., x_d.
- But the vector with the argmax_{xi} p(xi), x1,...,xd, is not the same as argmax_x p(x)
- ► Example (Bishop Table 8.1):

<i>x</i> ₁	<i>x</i> ₂	$p(x_1, x_2)$				
0	0	0.3	$\frac{x_1}{x_1}$	$p(x_1)$	<i>x</i> ₂	$p(x_2)$
1	0	0.4	0	0.6	0	0.7
0	1	0.3	1	0.4	1	0.3
1	1	0.0				

Using the distributive law to exploit the factorisation

► For marginal inference, we relied on the distributive law

$$ab + ac = a(b + c)$$

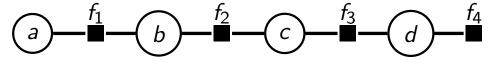
sum $(ab, ac) = a$ sum (b, c)

For finding the most probable state, use similarly

$$\max(ab, ac) = a \max(b, c)$$

(Based on a slide courtesy of David Barber)

$$p(a,b,c,d) \propto f_1(a,b)f_2(b,c)f_3(c,d)f_4(d)$$



For marginal inference, we had

$$p(a) \propto \sum_{b} \sum_{c} \sum_{d} f_1(a, b) f_2(b, c) f_3(c, d) f_4(d)$$

$$\propto \sum_{b} f_1(a, b) \left[\sum_{c} f_2(b, c) \left[\sum_{d} f_3(c, d) f_4(d) \right] \right]_{\substack{\mu_{f_3 \to c} = \mu_{c \to f_2} \\ \mu_{f_1 \to a}}}$$

(Based on a slide courtesy of David Barber)

$$p(a, b, c, d) \propto f_1(a, b) f_2(b, c) f_3(c, d) f_4(d)$$

$$a - f_1 - b - f_2 - c - f_3 - d - f_4$$

For finding $\max p(a, b, c, d)$:

$$\max_{a,b,c,d} p(a, b, c, d) = \frac{1}{Z} \max_{a} \max_{b} \max_{c} \max_{d} f_{1}(a, b) f_{2}(b, c) f_{3}(c, d) f_{4}(d)$$
$$= \frac{1}{Z} \max_{a} \max_{b} f_{1}(a, b) \left[\max_{c} f_{2}(b, c) \underbrace{\left[\max_{d} f_{3}(c, d) f_{4}(d) \right]}_{\gamma_{f_{3} \to c} = \gamma_{c \to f_{2}}} \right]$$

As before for the sum-product algorithm, the γ_{\rightarrow} denote messages

$$\max_{a,b,c,d} p(a,b,c,d) = \frac{1}{Z} \max_{a} \max_{b} f_1(a,b) \left[\max_{c} f_2(b,c) \underbrace{\left[\max_{d} f_3(c,d) f_4(d) \right]}_{\gamma_{f_3 \to c}(c) = \mu_{c \to f_2}(c)} \right]}_{\gamma_{f_2 \to b}(b) = \gamma_{b \to f_1}(b)}$$

How to compute $\operatorname{argmax} p(a, b, c, d)$?

$$\max_{a,b,c,d} p(a,b,c,d) = \frac{1}{Z} \max_{a} \max_{b} f_1(a,b) \left[\max_{c} f_2(b,c) \underbrace{\left[\max_{d} f_3(c,d) f_4(d) \right]}_{\gamma_{f_3 \to c}(c) = \mu_{c \to f_2}(c)} \right]}_{\gamma_{f_2 \to b}(b) = \gamma_{b \to f_1}(b)}$$

Consider $\max_d f_3(c, d)f_4(d)$:

- This is an optimisation problem that needs to be solved for all values of c.
- Maximiser $d^* = \operatorname{argmax}_d f_3(c, d) f_4(d)$ depends on c:

$$d^*(c) = \operatorname{argmax}_d f_3(c, d) f_4(d)$$

d*(c) is a function (look-up table) that returns the optimal value for d for any value of c.

$$\max_{a,b,c,d} p(a,b,c,d) = \frac{1}{Z} \max_{a} \max_{b} f_1(a,b) \left[\max_{c} f_2(b,c) \underbrace{\left[\max_{d} f_3(c,d) f_4(d) \right]}_{\gamma_{f_3 \to c}(c) = \mu_{c \to f_2}(c)} \right]}_{\gamma_{f_2 \to b}(b) = \gamma_{b \to f_1}(b)}$$

In addition to $d^*(c) = \operatorname{argmax}_d f_3(c, d) f_4(d)$, we further have:

$$egin{aligned} c^*(b) &= rgmax_c f_2(b,c) \gamma_{c o f_2}(c) \ c^*(a) &= rgmax_b f_1(a,b) \gamma_{b o f_1}(b) \ \hat{a} &= rgmax_a \gamma_{f_1 o a}(a) \end{aligned}$$

After \hat{a} has been computed, we can compute $\operatorname{argmax} p(a, b, c, d)$ via $\hat{b} = b^*(\hat{a})$, $\hat{c} = c^*(\hat{b})$, and $\hat{d} = d^*(\hat{c})$ ("back-tracking")

Max-product algorithm

- The above example for a chain extends to general factor graphs (like in variable elimination)
- max takes the place of \sum
- For factor trees: sum-product algorithm becomes max-product algorithm with corresponding rules of how to compute the corresponding messages (see Barber, Section 5.2.1)
- Messages for the max-product algorithm are called max-product messages.
- For numerical stability, it is better to implement the algorithms using log messages: max-product algorithm becomes max-sum algorithm (see Bishop, 8.4.5)

Program recap

1. Marginal inference by variable elimination

- Exploiting the factorisation by using the distributive law
- ab + ac = a(b + c) and by caching computations
- Variable elimination for general factor graphs
- Structural changes to the graph due to variable elimination
- The principles of variable elimination also apply to continuous random variables
- 2. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing
- 3. Inference of most probable states
 - Maximisers of the marginals \neq maximiser of joint
 - We can use the distributive law max(ab, ac) = a max(b, c) to exploit the factorisation
 - Max-product algorithm and back-tracking