Factor Graphs

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, University of Edinburgh

Spring Semester 2020

Recap

- Undirected and directed graphical models have complementary properties
- Both encode and (visually) represent statistical independencies (l-maps)
- Graphs tell us how probability density/mass functions factorise
- For directed graphs with parent sets pai

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid \mathrm{pa}_{i}\right)
$$

- For undirected graphs with maximal clique sets \mathcal{X}_{c}

$$
p\left(x_{1}, \ldots, x_{d}\right)=\frac{1}{Z} \prod_{c} \phi_{c}\left(\mathcal{X}_{c}\right)
$$

Program

1. What are factor graphs?
2. Advantages over directed or undirected graphs?

Program

1. What are factor graphs?

- Definition
- Visualising Gibbs distributions as factor graphs
- Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?

Definition of factor graphs

- A factor graph represents the factorisation of an arbitrary function (not necessarily related to pdfs/pmfs)
- Example: $h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{A}\left(x_{1}, x_{2}, x_{3}\right) f_{B}\left(x_{3}, x_{4}\right) f_{C}\left(x_{4}\right)$

Factor graph (FG):

- Two types of nodes: factor and variable nodes
- Convention: squares for factors, circles for variables (other conventions are used too)

Definition of factor graphs

- Example: $h\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{A}\left(x_{1}, x_{2}, x_{3}\right) f_{B}\left(x_{3}, x_{4}\right) f_{C}\left(x_{4}\right)$ Factor graph (FG):

- Edge between variable x and factor $f \Leftrightarrow x$ is an argument of f
- Variable nodes are always connected to factor nodes; no direct links between factor or variable nodes (FGs are bipartite graphs)
- We can also use directed edges (to indicate conditionals)

Visualising Gibbs distributions as factor graphs

- Example: $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \phi_{1}\left(x_{1}, x_{2}, x_{3}\right) \phi_{2}\left(x_{3}, x_{4}\right) \phi_{3}\left(x_{4}\right)$

- General case: $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{c} \phi_{c}\left(\mathcal{X}_{c}\right)$
- Factor node for all ϕ_{c}
- For all factors ϕ_{c} :
draw an undirected edge between ϕ_{c} and all $x_{i} \in \mathcal{X}_{c}$.
- Can visualise any undirected graphical model as a factor graph.

Visualising Gibbs distributions as factor graphs

Some differences to visualisation with undirected graph:

- Factors ϕ_{c} are shown; makes the graphs more informative (see next slide)
- Variables x_{i} are neighbours if they are connected to the same factor.
$p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{1}{Z} \phi_{1}\left(x_{1}, x_{2}, x_{3}\right) \phi_{2}\left(x_{3}, x_{4}\right) \phi_{3}\left(x_{4}\right)$

More informative than undirected graphs

- Mapping from Gibbs distribution to undirected graph is many to one but one-to-one for factor graphs.
- Example

$$
\begin{aligned}
& p_{A}\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{1}\right) \\
& p_{B}\left(x_{1}, x_{2}, x_{3}\right) \propto \phi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

FG for p_{B}

Visualising factors that are conditionals

- For $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$, we may want to include the information that x_{3} is conditioned on x_{1}, x_{2}
- Use arrows as in directed graphs.

- Can visualise any directed graphical model as a factor graph.

Mixed graphs

- Let $p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}, x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right)$.
- Directed graphs forces ordering of the random variables; undirected graph does not show conditioning on x_{1}, x_{2}

- Mixed FG to visualise the conditioning for $p\left(x_{3} \mid x_{1}, x_{2}\right)$ without imposing an ordering on x_{1} and x_{2}

Program

1. What are factor graphs?

2. Advantages over directed or undirected graphs?

- Computational advantages
- Statistical advantages

Importance of factorisation

- Factorisation was central in the development so far
- But directed and undirected graphs are not able to fully represent arbitrary factorisations of pdfs/pmfs.
For example, same graph for

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi_{1}\left(x_{1}, x_{2}\right) \phi_{2}\left(x_{2}, x_{3}\right) \phi_{3}\left(x_{3}, x_{1}\right) \\
& p\left(x_{1}, x_{2}, x_{3}\right) \propto \phi\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

- We should expect that being able to better represent the factorisation has advantages.

Example of computational advantages

Assume binary random variables x_{i}.

- Same undirected graph but
$p\left(x_{1}, \ldots, x_{d}\right) \propto \phi\left(x_{1}, \ldots, x_{d}\right)$ has 2^{d} free parameters, $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i<j} \phi_{i j}\left(x_{i}, x_{j}\right)$ has $\binom{d}{2} 2^{2}$ free parameters parameters \equiv entries to specify in a table representation
- The difference matters for learning and inference when the number of variables is large.

Example of statistical advantages

- Let x_{1} and x_{2} be two inputs
- x_{1} controls variable y_{1}
x_{2} controls y_{2}
- Variables y_{1} and y_{2} influence each other

- Model: $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right) p\left(x_{1}\right) p\left(x_{2}\right)$ (probabilistic modelling: pdf/pmf $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ captures uncertainty about how the x_{i} affect the y_{i} and about how the y_{i} interact)
- Choose $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ such that $p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)$ satisfies
- $x_{1} \Perp x_{2} \quad$ (independence between control variables)
- $x_{1} \Perp y_{2} \mid y_{1}, x_{2} \quad\left(y_{2}\right.$ is only directly influenced by y_{1} and $\left.x_{2}\right)$
- $x_{2} \Perp y_{1} \mid y_{2}, x_{1} \quad\left(y_{1}\right.$ is only directly influenced by y_{2} and $\left.x_{1}\right)$

Example of statistical advantages

- Three independencies are satisfied if $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ factorises as

$$
p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)=p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right)
$$

where $n\left(x_{1}, x_{2}\right)$ ensures normalisation of $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$

$$
n\left(x_{1}, x_{2}\right)=\left(\int p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) \mathrm{d} y_{1} \mathrm{~d} y_{2}\right)^{-1}
$$

(see tutorials)

- Directed and undirected graphs cannot represent the independencies induced by factorisation of $p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$ (see tutorials).
- Factor graphs and chain graphs (see Barber, Section 4.3, not covered in lecture) can represent them.
- Factor graphs can represent independencies that DAGs or UGs cannot or do not represent.

Example of statistical advantages
(not examinable)

$$
\begin{aligned}
& \text { Overall model: } \\
& p\left(y_{1}, y_{2}, x_{1}, x_{2}\right)=\overbrace{p\left(y_{1} \mid x_{1}\right) p\left(y_{2} \mid x_{2}\right) \phi\left(y_{1}, y_{2}\right) n\left(x_{1}, x_{2}\right)}^{p\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)} p\left(x_{1}\right) p\left(x_{2}\right)
\end{aligned}
$$

- Factor graph (Note: directed edges to y_{1}, y_{2} for all factors involved in the conditional)

- Independencies can be found from separation rules for factor graphs (see Barber, Section 4.4.1, and original paper "Extending Factor Graphs so as to Unify

Program recap

1. What are factor graphs?

- Definition
- Visualising Gibbs distributions as factor graphs
- Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?

- Computational advantages
- Statistical advantages

