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Recap

I Need for efficient representation of probabilistic models
I Restrict the number of directly interacting variables by making

independence assumptions
I Restrict the form of interaction by making parametric family

assumptions.
I DAGs and undirected graphs to represent independencies
I Equivalences between independencies (Markov properties) and

factorisation
I Rules for reading independencies from the graph that hold for

all distributions that factorise over the graph.
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Program

1. Independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)

3. Minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
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Program

1. Independency maps (I-maps)
Definition of I-maps and perfect maps
I-maps and factorisation
Examples and no guarantee for perfect maps

2. Equivalence of I-maps (I-equivalence)

3. Minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
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I-map

I We have seen that graphs represent independencies. We say
that they are independency maps (I-maps).

I Definition: Let U be a set of independencies that random
variables x = (x1, . . . xd ) satisfy. A DAG or undirected graph
K with nodes xi is said to be an independency map (I-map)
for U if the independencies I(K ) asserted by the graph are
part of U :

I(K ) ⊆ U
I Definition: K is said to be a perfect I-map (or P-map) if
I(K ) = U .

I A I-map is a “directed I-map” if K is a DAG, and an
“undirected I-map” if K is an undirected graph.
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I-map

The set of independencies U can be specified in different ways. For
example:

I as a list of independencies, e.g.

U = {x1 ⊥⊥ x2}

I as the independencies implied by a graph K0

U = I(K0)

I denoting by I(p) all the independencies satisfied by a specific
distribution p, we can have

U = I(p)
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I-maps and factorisation

I Assume p factorises over a DAG or undirected graph K , i.e
p(x) can be written as

p(x) =
∏

i
p(xi |pai ) or p(x) ∝

∏
c
φc(Xc)

I We have previously found that all independencies asserted by
the graph K hold for p.

I This means that
I(K ) ⊆ I(p)

and K is an I-map for I(p)
I But K is not guaranteed to be a perfect map for I(p) since,

as we have seen, I(K ) may miss some independencies that
hold for p.
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Perfect maps and factorisation

For what set U of independencies is a graph K a perfect map?
I Let K be a DAG or an undirected graph. We have seen that:

if X are Y and not (d-)separated by Z then X 6⊥⊥ Y |Z for
some p that factorises over K (some ≡ not all)

I Contrapositive: (Reminder: A⇒ B ⇔ B̄ ⇒ Ā)
if X ⊥⊥ Y |Z for all p that factorise over K then X and Y are
(d-)separated by Z

I Denote by PK the set of all p that factorise over K . We thus
have:  ⋂

p∈PK

I(p)

 ⊆ I(K )
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Perfect maps and factorisation

For what set U of independencies is a graph K a perfect map?
I Since for individual p we have I(K ) ⊆ I(p), this means that

I(K ) =
⋂

p∈PK

I(p)

I In plain English: K is a perfect map for the independencies
that hold for all p that factorise over the graph.
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Independencies with a directed but w/o undirected P-map

For x = (x1, x2, x3), consider U = {x1 ⊥⊥ x2}
I Perfect I-map: I(G) = U

x1 x2

x3

I I-map: I(G) = {}

x1 x2

x3

I Not an I-map: graph e.g. wrongly asserts x2 ⊥⊥ x3

x1 x2x3
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Independencies with a directed but w/o undirected P-map
For x = (x1, x2, x3), consider U = {x1 ⊥⊥ x2}

I Not an I-map: graph wrongly asserts x1 ⊥⊥ x2 | x3

x1 x2

x3

I I-map: I(H) = {}

x1 x2

x3

I Not an I-map: graph e.g. wrongly asserts x1 ⊥⊥ x3

x1 x2x3

I Going through all undirected graphs shows that there is no
undirected perfect I-map for U .
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Independencies with multiple equivalent I-maps
Consider now U = {x1 ⊥⊥ x2, x1 ⊥⊥ x2|x3, x2 ⊥⊥ x3, x2 ⊥⊥ x3|x1}

I I-map: I(H) = {x1 ⊥⊥ x2|x3} ⊂ U
x1 x2x3

I I-map: I(G) = {x1 ⊥⊥ x2|x3} ⊂ U
x1 x2x3

I Perfect I-map: I(H) = U
x1 x2x3

I Perfect I-map: I(G) = U
x1 x2x3

I Perfect I-map: I(G) = U
x1 x2x3
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Independencies with undirected but w/o directed P-map

For random variables (x , y , z , u), U = {x ⊥⊥ z |u, y , u ⊥⊥ y |x , z}
I Perfect map: I(H) = U

z

y

x

u

I I-map: I(H) = {x ⊥⊥ z |u, y} ⊂ U

z

y

x

u
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Independencies with undirected but w/o directed P-map
For random variables (x , y , z , u), U = {x ⊥⊥ z |u, y , u ⊥⊥ y |x , z}

I I-map: I(G) = {x ⊥⊥ z |u, y} ⊂ U

z

y

x

u

I Not an I-map: graph wrongly asserts u ⊥⊥ y |x

z

y

x

u

I Going through all DAGs shows that there is no directed
perfect I-map for U .

Michael Gutmann Expressive Power of Graphical Models 14 / 44



Remarks

The examples illustrate a number of important points:

I Multiple graphs may make the same independency assertions.
⇒ I-equivalency: When do we have I(K1) = I(K2)?

I The fully connected graph is always an I-map.
⇒ Minimal I-maps: sparsest graph that is still an I-map?

I Perfect maps may not exist, and some independencies are
better represented with directed than with undirected graphs,
and vice versa.
⇒ Pros/cons of directed and undirected graphs and
conversion between them?
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Program

1. Independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)
I-equivalence for DAGs: check the skeletons and the

immoralities
I-equivalence for undirected graphs: check the skeletons

3. Minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
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I-equivalence for DAGs

I How do we determine whether two DAGs make the same
independence assertions (that they are “I-equivalent”)?

I From d-separation: what matters is
I which node is connected to which irrespective of direction

(skeleton)
I the set of collider (head-to-head) connections

Connection p(x , y) p(x , y |z)
x z y x 6⊥⊥ y x ⊥⊥ y | z
x z y x 6⊥⊥ y x ⊥⊥ y | z
x z y x ⊥⊥ y x 6⊥⊥ y | z
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I-equivalence for DAGs

I The situation x ⊥⊥ y and x 6⊥⊥ y | z can only happen if we
have colliders without “covering edge” x → y or x ← y , that
is when parents of the collider node are not directly connected.

I Colliders without covering edge are called “immoralities”
I Theorem: For two DAGs G1 and G2:

G1 and G2 are I-equivalent ⇐⇒ G1 and G2 have the same
skeleton and the same set of immoralities.
(for a proof, see e.g. Theorem 4.4, Koski and Noble, 2009; not examinable)

x

z

y

x ⊥⊥ y and x 6⊥⊥ y | z
Collider w/o covering edge

x

z

y

x 6⊥⊥ y and x 6⊥⊥ y | z
Collider with covering edge
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Example

Not I-equivalent because of skeleton mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

Not I-equivalent because of immoralities mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

I-equivalent (same skeleton, same immoralities):

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

Not I-equivalent (immoralities mismatch)

x u

z

y

x ⊥⊥ y | u and x 6⊥⊥ y | u, z
Immorality: collider w/o

covering edge

x u

z

y

x 6⊥⊥ y | u and x ⊥⊥ y | u, z
Not an immorality
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Example

I-equivalent (same skeleton, no immoralities)

x u

z

y x u

z

y
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I-equivalence for undirected graphs

I Different undirected graphs make different independence
assertions.

I I-equivalent if their skeleton is the same.
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Program

1. Independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)

3. Minimal I-maps
Definition
Construction of undirected minimal I-maps
Construction of directed minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
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Minimal I-maps

I Criterion for an I-map is that the independency assertions
made by the graph are true. I-maps are not concerned with
the number of independency assertions made.

I I-maps of U may not represent (“miss”) some independencies
in U .

I Full graph does not make any assertions. Empty set is trivially
a subset of any U , so that the full graph is trivially an I-map.

I Definition: A minimal I-map is an I-map such that if you
remove an edge (more independencies), the resulting graph is
not an I-map any more.
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Minimal I-maps

I Intuitively, the point of minimal I-maps is to “sparsify” I-maps
so that they become more useful.
(while sparser, the independence assertions made must still be correct!)

I Sparser I-maps are more informative, easier to interpret, and
they facilitate learning and inference.

I Note: A perfect map for U is also a minimal I-map for U
(being perfect is a stronger requirement than being minimal)
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Constructing minimal I-maps

I If we know the factorisation of p, we can visualise p as a DAG
or an undirected graph K . Since p factorises over the
constructed K , K is an I-map for I(p) but not necessarily a
minimal I-map (see before).

I We have seen that K is a perfect map for the independencies
that hold for all p with a particular factorisation, but not
necessarily for all the independencies that hold for the specific
p.

I There are some p, for which a perfect map for I(p) does not
exist. (see tutorial 3 for an example)

I We thus settle for obtaining minimal I-maps for I(p).
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Constructing undirected minimal I-maps

For d random variables x with positive distribution p > 0, assume we can
test whether an independency is in I(p), i.e. holds for p.

I Approaches based on pairwise and local Markov property
I Both yield same (unique) graph.
I For local Markov property approach: For each variable xi :

1. determine its Markov blanket MB(xi ), i.e. find minimal set of
variables U such that

xi ⊥⊥ {all variables \ (xi ∪ U)} | U

is in I(p)
2. we know that xi and MB(xi ) must be neighbours in the graph:

Connect xi to all variables in MB(xi )
I We need p > 0 because otherwise local independencies may

not imply global ones (see slides on undirected graphical models).
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Constructing directed minimal I-maps

For d random variables x with distribution p, assume we can test whether
an independency is in I(p), i.e. holds for p.

I We can use the ordered Markov property to derive a directed
graph that is a minimal I-map for I(p).

I Procedure is exactly the same as the one used to simplify the
factorisation obtained by the chain rule:
1. Assume an ordering of the variables. Denote the ordered

random variables by x1, . . . , xd .
2. For each i , find a minimal subset of variables πi ⊆ prei such

that
xi ⊥⊥ {prei \ πi} | πi

is in I(p).
3. Construct a graph with parents pai = πi .
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Directed minimal I-maps are not unique

Consider p with perfect (and hence minimal) I-map G∗

a z

q

e

h

Graph G∗

a z

q

e

h

Minimal I-map for ordering
(e, h, q, z , a), see tutorials

I Directed (minimal) I-maps are not unique
I The minimal directed I-maps obtained with different orderings

are not I-equivalent.
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Program

1. Independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)

3. Minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
Moralisation for directed → undirected
Triangulation for undirected → directed
Strengths and weaknesses of directed and undirected graphs
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Directed to undirected graphical model

Goal: given a DAG G , find an undirected minimal I-map for I(G).
I Probabilistic models factorises according to G as

p(x1, . . . , xd ) =
d∏

i=1
p(xi |pai )

I Write each p(xi |pai ) as factor φi (xi ,pai ):

p(x1, . . . , xd ) =
d∏

i=1
φi (xi , pai )

Gibbs distribution with normalisation constant equal to one
I Visualise p as an undirected graph: form cliques for (xi , pai )
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Directed to undirected graphical model

I Visualise p as an undirected graph: form cliques for (xi , pai )
⇒ Remove arrows, and add edges between all parents of xi .

I Conversion from directed to undirected graphical model is
called “moralisation” because it removes immoralities that
may exist in the DAG G . Obtained undirected graph is the
“moral graph”M(G) of G .

I Process above is equivalent to constructing the undirected
minimal I-map as on slide 29 when the directed graph is used
to determine the required Markov blankets.
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Example

Given: directed graph G
a z

q

e

h

Moral graph H =M(G):

a z

q

e

h

Note: We have I(H) ⊂ I(G). The independency a ⊥⊥ z /∈ I(H).
We lost that information.

Michael Gutmann Expressive Power of Graphical Models 35 / 44



Canonical example

Given: directed graph G

x y

z

Moral graph H =M(G):

x y

z

I The fully connected graph is the only minimal undirected
I-map for I(G).

I We lost information: I(H) ⊂ I(G). The independency
x ⊥⊥ y /∈ I(H). See before: there is no undirected P-map for
I(G).

I Loss of information is due to presence of the immorality in G .
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Lossless conversion for DAGs without immoralities

I Immoralities allow DAGs to represent independencies that
cannot be represented with undirected graphs (e.g. x ⊥⊥ y
without enforcing x ⊥⊥ y |z in the example above)

I We loose these kind of independencies when moralising a
DAG.

I For a DAG G without immoralities, moralisation does not lead
to a loss of information: M(G) is an undirected perfect map
for I(G). (for a proof, see Section 4.5.1 in Koller and Friedman, 2009,
not examinable)

I Other way to understand this result: for DAGs without
immoralities, only the skeleton is relevant for I-equivalence.
Since the orientation of the arrows does not matter, we can
just drop them to obtain an I-equivalent undirected graph.
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Example

Given: directed graph G :

x u

z

y

Moral graph H =M(G)

x u

z

y

I We have I(H) = I(G) = {u ⊥⊥ z |x , y}.
I H is a perfect map for I(G).
I H and G are I-equivalent.
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Undirected to directed graphical model

Goal: given an undirected graph H, find a directed minimal I-map
for I(H).

I We can construct the directed minimal I-map with the
procedure on slide 30 but use H to determine the required
independencies: Instead of checking that

xi ⊥⊥ {prei \ πi} | πi

is in I(p), we check whether it is in I(H).
I Directed minimal I-map will not have any immoralities.

(for a proof, see e.g. Theorem 4.10 in Koller and Friedman’s book; not
examinable)

I Results in chordal/triangulated graphs (longest loop without
shortcuts is a triangle), because otherwise we would have an
immorality.
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Immoralities and chordal/triangulated DAGs
Undirected graph: (immoralities in red)

x1

x2x4

x3x5

DAGs:

x1

x2x4

x3x5

not chordal

x1

x2x4

x3x5

not chordal

x1

x2x4

x3x5

chordal
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Canonical example

z

y

x

u

Given: undirected graph H

x ⊥⊥ z | u, y
u ⊥⊥ y | x , z

z

y

x

u

G : min I-map for I(H)
(with ordering: x , y , u, z)

x ⊥⊥ z | u, y
u 6⊥⊥ y | x , z

I We lost information: I(G) ⊂ I(H).
I Different orderings would give different directed minimal

I-maps G . But there is no directed perfect map for I(H).
I Loss of information is due to the loop of length > 3 without a

shortcut in H (H is not chordal).
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Lossless conversion for chordal undirected graphs

(for proofs, see e.g. Section 4.5.3. in Koller and Friedman’s book; proofs not examinable)

I Such loops allow undirected graphs represent independencies
that cannot be represented with DAGs (see example above).

I We need to introduce edges (triangulate the graph) when
constructing the DAG because otherwise it would not be an
I-map. However, triangulation leads to a loss of information.

I If (and only if) H is a chordal/triangulated undirected graph,
we can obtain a DAG G that is a perfect map for I(H), i.e. H
and G are I-equivalent.
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Strengths and weaknesses

I Some independencies are more easily represented with DAGs,
others with undirected graphs.

I Both directed and undirected graphical models have strengths
and weaknesses.

I Undirected graphs are suitable when interactions are
symmetrical and when there is no natural ordering of the
variables, but they cannot represent “explaining away”
scenario (colliders).

I DAGs are suitable when we have an idea of the data
generating process (e.g. what is “causing” what), but they
may force directionality where there is none.

I It is possible to combine individual strengths with
mixed/partially directed graphs (see e.g. Barber, Section 4.3,
not examinable).
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Program recap

1. Independency maps (I-maps)
Definition of I-maps and perfect maps
I-maps and factorisation
Examples and no guarantee for perfect maps

2. Equivalence of I-maps (I-equivalence)
I-equivalence for DAGs: check the skeletons and the immoralities
I-equivalence for undirected graphs: check the skeletons

3. Minimal I-maps
Definition
Construction of undirected minimal I-maps
Construction of directed minimal I-maps

4. (Lossy) conversion between directed and undirected I-maps
Moralisation for directed → undirected
Triangulation for undirected → directed
Strengths and weaknesses of directed and undirected graphs
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