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Recap

» Need for efficient representation of probabilistic models

» Restrict the number of directly interacting variables by making
independence assumptions

» Restrict the form of interaction by making parametric family
assumptions.

» DAGs and undirected graphs to represent independencies

» Equivalences between independencies (Markov properties) and
factorisation

» Rules for reading independencies from the graph that hold for
all distributions that factorise over the graph.
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Program

1. Independency maps (I-maps)
2. Equivalence of I-maps (l-equivalence)
3. Minimal |I-maps

4. (Lossy) conversion between directed and undirected I-maps
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Program

1. Independency maps (I-maps)
e Definition of I-maps and perfect maps
e |-maps and factorisation
e Examples and no guarantee for perfect maps
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l-map

» \We have seen that graphs represent independencies. We say
that they are independency maps (I-maps).

» Definition: Let U be a set of independencies that random
variables x = (xq, ... xy) satisfy. A DAG or undirected graph
K with nodes x; is said to be an independency map (I-map)
for U if the independencies Z(K) asserted by the graph are
part of U:

I(K)CU

» Definition: K is said to be a perfect I-map (or P-map) if
Z(K)=U.

» A l-map is a “directed I-map” if K is a DAG, and an
“undirected I-map” if K is an undirected graph.
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l-map

The set of independencies U/ can be specified in different ways. For
example:

» as a list of independencies, e.g.
U=1{x 1 x}
» as the independencies implied by a graph Ky
U =1(Kp)

» denoting by Z(p) all the independencies satisfied by a specific
distribution p, we can have

U=1I(p)
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I-maps and factorisation

» Assume p factorises over a DAG or undirected graph K, i.e
p(x) can be written as

p(x) =[] pCxilpa;)  or  p(x) oc ] [ ¢e(e)

» We have previously found that all independencies asserted by
the graph K hold for p.

» This means that
I(K) < Z(p)
and K is an I-map for Z(p)

» But K is not guaranteed to be a perfect map for Z(p) since,
as we have seen, Z(K) may miss some independencies that
hold for p.
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Perfect maps and factorisation

For what set U/ of independencies is a graph K a perfect map?

» Let K be a DAG or an undirected graph. We have seen that:

if X are Y and not (d-)separated by Z then X Y Y|Z for
some p that factorises over K (some = not all)

» Contrapositive: (Reminder: A= B & B = A)

if X 1L Y|Z for all p that factorise over K then X and Y are
(d-)separated by Z

» Denote by Pk the set of all p that factorise over K. We thus
have:

M Z(p)| € Z(K)

| pPEPK
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Perfect maps and factorisation

For what set U/ of independencies is a graph K a perfect map?
» Since for individual p we have Z(K) C Z(p), this means that

I(K)= (] Z(p)

pPEPk

» In plain English: K is a perfect map for the independencies
that hold for all p that factorise over the graph.
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Independencies with a directed but w/o undirected P-map

For x = (x1, X2, x3), consider Y = {x1 1L xo}
» Perfect I-map: Z(G) =U

» Not an I-map: graph e.g. wrongly asserts x» 1L x3

ORONO
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» |l-map: Z(G) = {}



Independencies with a directed but w/o undirected P-map

For x = (x1, X2, x3), consider Y = {x1 1L x>}
» Not an |-map: graph wrongly asserts x; 1L x> | x3

» Not an |I-map: graph e.g. wrongly asserts x; 1l x3

D )

» Going through all undirected graphs shows that there is no
undirected perfect I-map for U.

» |l-map: Z(H) = {}
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Independencies with multiple equivalent I-maps

Consider now U = {Xl Al X2, X1 A X2‘X3, X2 Al X3, X2 Al X3‘X1}
» l-map: Z(H) = {xy 1L xo|x3} C U

» l-map: Z(G) = {x1 1L xo|x3} C U

QOO

» Perfect I-map: Z(H) =U

OmONO

» Perfect I-map: Z(G) =U

OxONO

» Perfect I-map: Z(G) = U

OmONO
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Independencies with undirected but w/o directed P-map

For random variables (x,y,z, u), U ={x 1L z|u,y, u 1L y|x, z}
» Perfect map: Z(H) =U

» l-map: Z(H) = {x 1L z|u,y} CU
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Independencies with undirected but w/o directed P-map

For random variables (x,y,z, u), U = {x 1L z|u,y, u 1L y|x, z}
» l-map: Z(G) ={x 1L zlu,y} C U

(X
A
@Yﬁ

» Not an I-map: graph wrongly asserts u 1l y|x
(
oo
(2

» Going through all DAGs shows that there is no directed
perfect I-map for U.
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Remarks

The examples illustrate a number of important points:

» Multiple graphs may make the same independency assertions.
= l-equivalency: When do we have Z(Ki) = Z(K>)?

» The fully connected graph is always an I-map.
= Minimal |-maps: sparsest graph that is still an I-map?

» Perfect maps may not exist, and some independencies are
better represented with directed than with undirected graphs,
and vice versa.
= Pros/cons of directed and undirected graphs and
conversion between them?
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Program

2. Equivalence of I-maps (l-equivalence)
o |-equivalence for DAGs: check the skeletons and the
immoralities
o |-equivalence for undirected graphs: check the skeletons
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l-equivalence for DAGs

» How do we determine whether two DAGs make the same
independence assertions (that they are “l-equivalent™)?

» From d-separation: what matters is

» which node is connected to which irrespective of direction

(skeleton)

» the set of collider (head-to-head) connections

Connection  p(x,y) p(x,y|z)

O—O—0) xUy xlyl|z
O—E—0 xUy xlyl|z
O—O— xly xUylz
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l-equivalence for DAGs

» The situation x Il y and x U y | z can only happen if we
have colliders without “covering edge” x — y or x <— y, that
is when parents of the collider node are not directly connected.

» Colliders without covering edge are called “immoralities”

» Theorem: For two DAGs G; and Go:
G1 and Gy are l-equivalent <= G; and G> have the same
skeleton and the same set of immoralities.
(for a proof, see e.g. Theorem 4.4, Koski and Noble, 2009; not examinable)

x1d yandx L y|z xUyandx L yl|z

Collider w/o covering edge Collider with covering edge
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Example

Not |-equivalent because of skeleton mismatch:
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Example

Not |-equivalent because of immoralities mismatch:
Gy: Go:
OO OO
O O
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Example

l-equivalent (same skeleton, same immoralities):
Gli G2:
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Example

Not I-equivalent (immoralities mismatch)

(CH—(D—( (D=
Y

xAyluvandx L y|uz xWyluvandx Il y|u,z
Immorality: collider w/o Not an immorality
covering edge
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Example

l-equivalent (same skeleton, no immoralities)
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l-equivalence for undirected graphs

» Different undirected graphs make different independence
assertions.

» |-equivalent if their skeleton is the same.
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Program

3. Minimal I-maps
e Definition
e Construction of undirected minimal I-maps
e Construction of directed minimal |I-maps
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Minimal |-maps

» Criterion for an I-map is that the independency assertions
made by the graph are true. |I-maps are not concerned with
the number of independency assertions made.

» |-maps of & may not represent (“miss”) some independencies
in U.

» Full graph does not make any assertions. Empty set is trivially
a subset of any U/, so that the full graph is trivially an I-map.

» Definition: A minimal I-map is an I-map such that if you
remove an edge (more independencies), the resulting graph is
not an I-map any more.
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Minimal |-maps

» Intuitively, the point of minimal I-maps is to “sparsify” I-maps
so that they become more useful.

(while sparser, the independence assertions made must still be correct!)

» Sparser |-maps are more informative, easier to interpret, and
they facilitate learning and inference.

» Note: A perfect map for U/ is also a minimal |I-map for U/

(being perfect is a stronger requirement than being minimal)
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Constructing minimal |-maps

» |f we know the factorisation of p, we can visualise p as a DAG
or an undirected graph K. Since p factorises over the
constructed K, K is an |-map for Z(p) but not necessarily a
minimal I-map (see before).

» \We have seen that K is a perfect map for the independencies
that hold for all p with a particular factorisation, but not
necessarily for all the independencies that hold for the specific

p.
» There are some p, for which a perfect map for Z(p) does not
exist. (see tutorial 3 for an example)

» We thus settle for obtaining minimal I-maps for Z(p).
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Constructing undirected minimal |-maps

For d random variables x with positive distribution p > 0, assume we can
test whether an independency is in Z(p), i.e. holds for p.

» Approaches based on pairwise and local Markov property

» Both yield same (unique) graph.

» For local Markov property approach: For each variable x;:

1. determine its Markov blanket MB(x;), i.e. find minimal set of
variables U such that

x; AL {all variables \ (x; U U)} | U

is in Z(p)
2. we know that x; and MB(x;) must be neighbours in the graph:
Connect x; to all variables in MB(x;)

» We need p > 0 because otherwise local independencies may
not imply global ones (see slides on undirected graphical models).
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Constructing directed minimal |I-maps

For d random variables x with distribution p, assume we can test whether
an independency is in Z(p), i.e. holds for p.

» \We can use the ordered Markov property to derive a directed
graph that is a minimal I-map for Z(p).

» Procedure is exactly the same as the one used to simplify the
factorisation obtained by the chain rule:

1. Assume an ordering of the variables. Denote the ordered

random variables by xq, ..., xq.
2. For each i, find a minimal subset of variables 7; C pre; such
that

x; AL {pre; \ m;} | w;

is in Z(p).
3. Construct a graph with parents pa; = ;.
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Directed minimal I-maps are not unique

Consider p with perfect (and hence minimal) I-map G*

© (&

Graph G* Minimal I-map for ordering
(e, h,q,z,a), see tutorials

» Directed (minimal) I-maps are not unique

» The minimal directed |-maps obtained with different orderings
are not l-equivalent.
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Program

4. (Lossy) conversion between directed and undirected |-maps
o Moralisation for directed — undirected
o Triangulation for undirected — directed
o Strengths and weaknesses of directed and undirected graphs
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Directed to undirected graphical model

Goal: given a DAG G, find an undirected minimal I-map for Z(G).

» Probabilistic models factorises according to G as
d
P(X1, ..y Xd) = H p(xi|pa;)
i=1
» Write each p(x;j|pa;) as factor ¢;(x;, pa;):

d
p(x1, ...y Xq) = H ¢i(xi, pa;)
i=1

Gibbs distribution with normalisation constant equal to one

» Visualise p as an undirected graph: form cliques for (x;, pa;)
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Directed to undirected graphical model

» Visualise p as an undirected graph: form cliques for (x;, pa;)
= Remove arrows, and add edges between all parents of x;.

» Conversion from directed to undirected graphical model is
called “moralisation” because it removes immoralities that
may exist in the DAG G. Obtained undirected graph is the
“moral graph” M(G) of G.

» Process above is equivalent to constructing the undirected
minimal I-map as on slide 29 when the directed graph is used
to determine the required Markov blankets.
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Example

Given: directed graph G Moral graph H = M(G):

OO 2 z

Note: We have Z(H) C Z(G). The independency a 1L z ¢ Z(H).
We lost that information.
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Canonical example

Given: directed graph G Moral graph H = M(G):

X y

» The fully connected graph is the only minimal undirected
l-map for Z(G).

» We lost information: Z(H) C Z(G). The independency
x Iy ¢ T(H). See before: there is no undirected P-map for

7(G).

» Loss of information is due to presence of the immorality in G.
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| ossless conversion for DAGs without immoralities

» Immoralities allow DAGs to represent independencies that
cannot be represented with undirected graphs (e.g. x Iy
without enforcing x 1L y|z in the example above)

» We loose these kind of independencies when moralising a
DAG.

» For a DAG G without immoralities, moralisation does not lead
to a loss of information: M(G) is an undirected perfect map
for I( G). (for a proof, see Section 4.5.1 in Koller and Friedman, 20009,

not examinable)

» Other way to understand this result: for DAGs without
immoralities, only the skeleton is relevant for I-equivalence.
Since the orientation of the arrows does not matter, we can
just drop them to obtain an l-equivalent undirected graph.
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Example

Given: directed graph G: Moral graph H = M(G)
o=o=0 o=oRo

N

» We have Z(H) = Z(G) = {u 1L z|x, y}.
» H is a perfect map for Z(G).

» H and G are l-equivalent.
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Undirected to directed graphical model

Goal: given an undirected graph H, find a directed minimal I-map
for Z(H).

» \We can construct the directed minimal I-map with the
procedure on slide 30 but use H to determine the required
independencies: Instead of checking that

x; 1 {pre; \ 7} | m;

is in Z(p), we check whether it is in Z(H).

» Directed minimal I-map will not have any immoralities.
(for a proof, see e.g. Theorem 4.10 in Koller and Friedman's book; not

examinable)

» Results in chordal /triangulated graphs (longest loop without
shortcuts is a triangle), because otherwise we would have an
immorality.
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Immoralities and chordal /triangulated DAGs

Undirected graph: (immoralities in red)

Co—2
@.@
©

DAGs:

(—) ) (=

OWORNO @‘@

not chordal not chordal chordal
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Canonical example

-

Given: undirected graph H G: min |-map for Z(H)
(with ordering: x,y, u, z)
x 1 z|uy x1 z|uy
ullyl|x,z ullyl|x, z

» We lost information: Z(G) C Z(H).

» Different orderings would give different directed minimal
l-maps G. But there is no directed perfect map for Z(H).

» Loss of information is due to the loop of length > 3 without a
shortcut in H (H is not chordal).
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Lossless conversion for chordal undirected graphs

(for proofs, see e.g. Section 4.5.3. in Koller and Friedman's book; proofs not examinable)

» Such loops allow undirected graphs represent independencies
that cannot be represented with DAGs (see example above).

» We need to introduce edges (triangulate the graph) when
constructing the DAG because otherwise it would not be an
I-map. However, triangulation leads to a loss of information.

» If (and only if) H is a chordal/triangulated undirected graph,
we can obtain a DAG G that is a perfect map for Z(H), i.e. H
and G are l-equivalent.
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Strengths and weaknesses

» Some independencies are more easily represented with DAGs,
others with undirected graphs.

» Both directed and undirected graphical models have strengths
and weaknesses.

» Undirected graphs are suitable when interactions are
symmetrical and when there is no natural ordering of the
variables, but they cannot represent “explaining away”
scenario (colliders).

» DAGs are suitable when we have an idea of the data
generating process (e.g. what is “causing” what), but they
may force directionality where there is none.

» |t is possible to combine individual strengths with
mixed /partially directed graphs (see e.g. Barber, Section 4.3,
not examinable).
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Program recap

1. Independency maps (I-maps)
@ Definition of I-maps and perfect maps
e |-maps and factorisation
e Examples and no guarantee for perfect maps

2. Equivalence of I-maps (l-equivalence)
e |-equivalence for DAGs: check the skeletons and the immoralities
e |-equivalence for undirected graphs: check the skeletons

3. Minimal |I-maps
@ Definition
e Construction of undirected minimal I-maps
e Construction of directed minimal |I-maps

4. (Lossy) conversion between directed and undirected |-maps
e Moralisation for directed — undirected
e Triangulation for undirected — directed
e Strengths and weaknesses of directed and undirected graphs
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