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Recap

I We have seen that we can visualise pdfs/pmfs p(x) without
imposing an ordering or directionality of interaction between
the random variables by using an undirected graph.

I The undirected graph allows us to read out independencies
that must hold for p(x).

I When we defined the graph for a pdf/pmf p(x) the exact
definition (e.g. numerical values) of p(x) did not matter; we
only used its factorisation.

I This enables us to define a set of probability distributions
based on an undirected graph, i.e. an undirected graphical
model.

Michael Gutmann Undirected Graphical Models 2 / 27



Program

1. Definition of undirected graphical models

2. Independencies from graph separation

3. Further methods to determine independencies
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Program

1. Definition of undirected graphical models
Via factorisation according to the graph
Maximal cliques

2. Independencies from graph separation

3. Further methods to determine independencies
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Undirected graphical models

I We started with a pdf/pmf and associated a undirected graph
with it.

I We now go the other way around and start with an undirected
graph.

I Definition An undirected graphical model based on an
undirected graph with d nodes and associated random
variables xi is the set of pdfs/pmfs that factorise as

p(x1, . . . , xd) = 1
Z

∏
c
φc(Xc)

where Z is the normalisation constant, φc(Xc) ≥ 0, and the
Xc correspond to the maximal cliques in the graph.

I p(x1, . . . , xd) as above are said to factorise over/according to
the graph.
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Remarks

I An undirected graph defines the pdfs/pmfs in form of Gibbs
distributions.

I The undirected graphical model corresponds to a set of
probability distributions. This is because we left the actual
definition of the factors φc(Xc) unspecified.

I People may also use “undirected graphical model” to refer to
individual elements of the set (overloading of the name as for
directed graphical models).

I Other names for an undirected graphical model: Markov
network (MN), Markov random field (MRF)

I The Xc correspond to maximal cliques in the graph.
Maximal clique: a set of fully connected nodes (clique) that is
not contained in another clique.
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Example
Undirected graph:

x1

x2

x3

x4

x5

x6

Random variables: x = (x1, . . . , x6)

Maximal cliques: {x1, x2, x4}, {x2, x3, x4}, {x3, x5}, {x3, x6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise
as:

p(x) = 1
Z φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
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Why maximal cliques?

I The mapping from Gibbs distribution to graph is many to one.
We may obtain the same graph for different Gibbs
distributions, e.g.

p(x) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)
p(x) ∝ φ̃1(x1, x2)φ̃2(x1, x4)φ̃3(x2, x4)φ̃4(x2, x3)φ̃5(x3, x4)φ̃6(x3, x5)φ̃7(x3, x6)

x1

x2

x3

x4

x5

x6

I By using maximal cliques, we take a conservative approach
and do not make additional assumptions on the factorisation.
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Example (pairwise Markov network)

Graph:

x1 x2 x3

x4 x5 x6

Random variables: x = (x1, . . . , x6)

Maximal cliques: all neighbours

{x1, x2} {x2, x3} {x4, x5} φ6{x5, x6} {x1, x4} {x2, x5} φ7{x3, x6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise
as:

p(x) ∝φ1(x1, x2)φ2(x2, x3)φ3(x4, x5)φ4(x5, x6)φ5(x1, x4)φ6(x2, x5)φ7(x3, x6)

Example of a pairwise Markov network.
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Program

1. Definition of undirected graphical models
Via factorisation according to the graph
Maximal cliques

2. Independencies from graph separation

3. Further methods to determine independencies
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Graph separation and conditional independence

I Undirected graph G :

x1

x2

x3

x4

x5

x6

I The graph defines a set of pdfs/pmfs that factorise as
p(x) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)φ3(x3, x5)φ4(x3, x6)

I Pick any specific instance p∗ from the set.
I Visualising p∗ as an undirected graph G∗ gives the above

graph or one with some edges removed.
Assume, for example, that p∗ is such that the corresponding
factor φ1(x1, x2, x4) does not depend on x4. We would then
not have an edge between x1 and x4.
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Graph separation and conditional independence

G :

x1

x2

x3

x4

x5

x6

G∗:

x1

x2

x3

x4

x5

x6

I If a set Z separates some variables in G , it also separates
them in G∗.

I Statistical independencies derived via graph separation using
G must hold for p∗ (but p∗ may satisfy additional ones that
we can’t see using G)

⇒ p∗ satisfies the global Markov property relative to G .
I This means that all pdfs/pmfs defined by an undirected graph

satisfy the global Markov property relative to it.
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Graph separation and conditional independence

Theorem:
Let G be the undirected graph and X ,Y ,Z three disjoint subsets
of its nodes. If X and Y are separated by Z , then X ⊥⊥ Y | Z for
all probability distributions that factorise over the graph.

Important because:
1. the theorem allows us to read out (conditional)

independencies from the undirected graph
2. no restriction on the sets X ,Y ,Z
3. the theorem shows that graph separation does not indicate

false independence relations. (“Soundness” of the
independence assertions.)
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Graph separation and conditional independence

Theorem: If X and Y are not separated by Z in the graph
then X 6⊥⊥ Y | Z in some probability distributions that factorise
according to the graph.

Optional, for those interested: A proof sketch can be found in Section 4.3.1.2
of Probabilistic Graphical Models by Koller and Friedman.

Remarks:
I The theorem implies that for some distributions, we may have

X ⊥⊥ Y | Z even though X and Y are not separated by Z .
The separation criterion is not “complete” (“recall-rate” is not
guaranteed to be 100%).

I This also means that the theorem only allows us to decide
about independence and not about dependence.
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Example (pairwise Markov network)

Graph:

x1 x2 x3

x4 x5 x6

Some independencies from global Markov property:

x1, x4 ⊥⊥ x3, x6 | x2, x5

x1 ⊥⊥ x5, x6, x3︸ ︷︷ ︸
all \(x1∪ne1)

| x4, x2︸ ︷︷ ︸
ne1

x1 ⊥⊥ x6 | x2, x3, x4, x5︸ ︷︷ ︸
all without x1,x6

Last two are examples of the “local Markov property” and the
“pairwise Markov property” relative to the undirected graph.
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Program

1. Definition of undirected graphical models

2. Independencies from graph separation

3. Further methods to determine independencies
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Program

1. Definition of undirected graphical models

2. Independencies from graph separation

3. Further methods to determine independencies
Local Markov property
Pairwise Markov property
Equivalence between factorisation and Markov properties for

positive distributions
Markov blanket
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Local Markov property
Denote the set of all nodes by X and the neighbours of a node α
by ne(α).

I A probability distribution is said to satisfy the local Markov
property relative to an undirected graph if

α ⊥⊥ X \ (α ∪ ne(α)) | ne(α) for all nodes α ∈ X
I If p satisfies the global Markov property, then it satisfies the

local Markov property. This is because ne(α) blocks all trails
to remaining nodes.

α
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Pairwise Markov property
Denote the set of all nodes by X .

I A probability distribution is said to satisfy the pairwise Markov
property relative to an undirected graph if

α ⊥⊥ β | X \ {α, β} for all non-neighbouring α, β ∈ X

I If p satisfies the local Markov property, then it satisfies the
pairwise Markov property.

α

β
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Summary

Let p be a pdf/pmf defined by the undirected graph G .

p factorises over G
⇓

p satisfies the global Markov property
⇓

p satisfies the local Markov property
⇓

p satisfies the pairwise Markov property
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Do we have an equivalence?

I In directed graphical models, we had an equivalence of
I factorisation,
I ordered Markov property,
I local directed Markov property, and
I global directed Markov property.

I Do we have a similar equivalence for undirected graphical
models?

Yes, under some very mild condition
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Intersection property

I The intersection property holds for all distributions with
p(x) > 0 for all values of x in its domain.
(For a proof, see e.g. Lauritzen, 1996, Prop 3.1)

I Excludes deterministic relationships between the variables.
I Intersection property: Let A,B,C ,D be sets of random

variables
If A ⊥⊥ B | (C∪D) and A ⊥⊥ C | (B∪D) then A ⊥⊥ (B∪C) | D

A

D

C

B
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From pairwise to global Markov property and factorisation

(For proofs, see e.g. Lauritzen, 1996, Section 3.2.)

I Let p(x1, . . . , xd) be a pdf/pmf that satisfies the intersection
property for all disjoint subsets A,B,C ,D of {x1, . . . , xd}.

I If p satisfies the pairwise Markov property with respect to an
undirected graph G then

I p satisfies the global Markov property with respect to G , and
I p factorises according to G .

I Hence: equivalence of factorisation and the global, local, and
pairwise Markov properties for positive distributions.

I Equivalence known as Hammersely-Clifford theorem.
I Important e.g. for learning because prior knowledge may come

in form of conditional independencies (the graph), which we
can incorporate by working with Gibbs distributions that
factorise accordingly.
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Summary of the equivalences

Given a undirected graph with nodes (random variables) xi and maximal
cliques Xc , we have the following equivalences:

p(x) factorises over the graph p(x1, . . . , xd) = 1
Z

∏
c φc(Xc), φc(Xc) > 0

m
p(x) satisfies the pairwise MP α ⊥⊥ β | {x1, . . . , xd} \ {α, β}

m
p(x) satisfies the local MP α ⊥⊥ {x1, . . . , xd} \ (α ∪ ne(α)) | ne(α)

m
p(x) satisfies the global MP all independencies asserted by graph separation

(MP: Markov property)

Broadly speaking, the graph serves two related purposes:

1. it tells us how distributions factorise

2. it represents the independence assumptions made
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Markov blanket

What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From local Markov property: MB(x) = ne(x):

x ⊥⊥ {all variables \ (x ∪ ne(x))} | ne(x)

x
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Program recap

1. Definition of undirected graphical models
Via factorisation according to the graph
Maximal cliques

2. Independencies from graph separation

3. Further methods to determine independencies
Local Markov property
Pairwise Markov property
Equivalence between factorisation and Markov properties for

positive distributions
Markov blanket
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