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Recap

I Statistical independence assumptions facilitate the efficient
representation of probabilistic models by limiting the number
of variables that are allowed to directly interact with each
other.

I Statistical independencies lead to a (partial) factorisation of
pdfs/pmfs

I Equivalence between factorisation and ordered Markov
property

I Visualisation of pdfs/pmfs as directed graph
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Program

1. Definition of directed graphical models

2. Three canonical connections in a DAG and their properties

3. Independencies in directed graphical models
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Program

1. Definition of directed graphical models
Definition via factorisation according to the graph
Definition via ordered Markov property
Derive independencies from the ordered Markov property

with different topological orderings

2. Three canonical connections in a DAG and their properties

3. Independencies in directed graphical models
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Directed graphical model

I We started with a pdf/pmf, wrote it in factorised form
according to some ordering, and associated a DAG with it.

I We can also go the other way around and start with a DAG.
I Definition (via factorisation property) A directed graphical

model based on a DAG with d nodes and associated random
variables xi is the set of pdfs/pmfs that factorise as

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai),

where pai denotes the parents of xi in the graph.
I Remark: a pdf/pmf p(x1, . . . , xd) that can be written in the

above form is said to “factorise over the graph”.
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Example

DAG:

a z

q

e

h

Random variables: a, z , q, e, h

Parent sets: paa = paz = ∅,paq = {a, z},pae = {q},pah = {z}.

Directed graphical model: set of pdfs/pmfs p(a, z , q, e, h) that
factorise as:

p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)

Michael Gutmann Directed Graphical Models 6 / 45



Alternative definition of directed graphical models

I For any DAG with d nodes we can always find an ordering of
the associated random variables that is topological to the
DAG. Re-label the nodes accordingly as x1, . . . , xd .

I Recall: in topological orderings, the parents always come
before the children.

I Hence: pai ⊆ prei whatever topological ordering we picked.
I The derived equivalence of factorisation and ordered Markov

property, with the pai as the πi , thus yields the result:

p(x) =
d∏

i=1
p(xi |pai)⇐⇒ xi ⊥⊥ (prei \ pai) | pai for all i

I A since pai ⊆ prei whatever the topological ordering, the
result holds for all topological orderings.
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Alternative definition of directed graphical models

I Two consequences:
I For a given DAG, the independencies derived from the ordered

Markov property with any topological ordering imply the
independencies derived with any other topological ordering.

I The insensitivity to the particular topological ordering used
provides an alternative definition of directed graphical models.

I Definition (via ordered Markov property) A directed graphical
model based on a DAG with d nodes and associated random
variables xi is the set of pdfs/pmfs that satisfy the ordered
Markov property

xi ⊥⊥ (prei \ pai) |pai for all i

for an ordering x1, . . . , xd of the xi that is topological to the
DAG.
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Example
DAG:

a z

q

e

h

Random variables: a, z , q, e, h
Ordering: (a, z , q, e, h) (meaning: x1 = a, x2 = z, x3 = q, x4 = e, x5 = h)

Predecessor sets for the ordering:
prea = ∅, prez = {a}, preq = {a, z}, pree = {a, z , q}, preh = {a, z , q, e}
Parent sets: as before
paa = paz = ∅, paq = {a, z}, pae = {q}, pah = {z}
All models in the set defined by the DAG satisfy xi ⊥⊥ (prei \ pai) | pai :

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z

Michael Gutmann Directed Graphical Models 9 / 45



Example (different topological ordering)
DAG:

a z

q

e

h

Ordering: (a, z , h, q, e)
Predecessor sets for the ordering:
prea = ∅, prez = {a}, preh = {a, z}, preq = {a, z , h}, pree = {a, z , h, q}
Parent sets: as before
paa = paz = ∅, pah = {z}, paq = {a, z},pae = {q}
All models in the set defined by the DAG satisfy xi ⊥⊥ (prei \ pai) | pai :

z ⊥⊥ a h ⊥⊥ a | z q ⊥⊥ h | a, z e ⊥⊥ {a, z , h} | q
Note: the models also satisfy those obtained with the previous ordering:

z ⊥⊥ a e ⊥⊥ {a, z} | q h ⊥⊥ {a, q, e} | z
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Remarks

I By using different topological orderings you can generate possibly
different independence relations satisfied by the model.
(While they imply each other, deriving them from each other from the basic
definition of independence may not be straightforward.)

I Missing edges in a DAG cause the pai to be smaller than the prei ,
and thus lead to the independencies.

I The directed graphical model corresponds to a set of probability
distributions. Two views according to the two definitions: The set
includes all those distributions that you get

I by looping over all possible conditionals p(xi |pai),
I by retaining, from all possible joint distributions over the xi ,

those that satisfy the independencies given by the ordered
Markov property

I Individual pdfs/pmf in the set are typically also called a directed
graphical model (“overloading” of the name of the set and its elements).

I Other names for directed graphical models: belief network, Bayesian
network, Bayes network.
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Example: Markov model

DAG:

x1 x2 x3 x4 x5

All models, i.e. pdfs/pmfs p(x), in the set factorise as
p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)
There is only one topological ordering: (x1, x2, . . . , x5)
By ordered Markov property: all models in the set satisfy:
xi+1 ⊥⊥ x1, . . . , xi−1 | xi
(future independent of the past given the present)

Michael Gutmann Directed Graphical Models 12 / 45



Example: Probabilistic PCA, factor analysis, ICA

(PCA: principal component analysis; ICA: independent component analysis)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

Explains properties of (observed) yi through fewer (unobserved) xi .
Different further assumptions lead to different methods (more
later).

All models in the set factorise as p(x1, x2, x3, y1, . . . , y5) =
p(x1)p(x2)p(x3)p(y1|x1, x2, x3)p(y2|x1, x2, x3) . . . p(y5|x1, x2, x3)
With topological ordering (x1, x2, x3, y1, y2, y3, y4, y5): All satisfy:
xi ⊥⊥ xj y2 ⊥⊥ y1 | x1, x2, x3 y3 ⊥⊥ y1, y2 | x1, x2, x3
y4 ⊥⊥ y1, y2, y3 | x1, x2, x3 y5 ⊥⊥ y1, y2, y3, y4|x1, x2, x3
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Program

1. Definition of directed graphical models
Definition via factorisation according to the graph
Definition via ordered Markov property
Derive independencies from the ordered Markov property

with different topological orderings

2. Three canonical connections in a DAG and their properties

3. Independencies in directed graphical models
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Further independence properties?

I Parent-child links in the graph encode (conditional)
independence properties.

I Ordered Markov property yields sets of independence
assertions.

I Questions:
I For any triple of random variables (x , y , z), can we determine

whether x ⊥⊥ y | z holds?
I Does the graph induce or impose additional independencies on

any probability distribution that factorises over the graph?
I Important because

I it yields increased understanding of the properties of the model
I we can exploit the independencies e.g. for inference and

learning
I Approach: Investigate how probabilistic evidence that

becomes available at a node can “flow” through the DAG and
influence our belief about another node.
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Program

1. Definition of directed graphical models

2. Three canonical connections in a DAG and their properties
Serial connection
Diverging connection
Converging connection
I-equivalence

3. Independencies in directed graphical models
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Three canonical connections in a DAG

In a DAG, two nodes x , y can be connected via a third node z in
three ways:
1. Serial connection (chain, head-tail or tail-head)

x z y

2. Diverging connection (fork, tail-tail)

x z y

3. Converging connection (collider, head-head, v-structure)

x z y

Note: in any case, the sequence x , z , y forms a trail
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Serial connection x z y

I Markov model is made up of serial connections
I Graph: x influences z , which in turn influences y but no direct

influence from x to y .
I Factorisation: p(x , z , y) = p(x)p(z |x)p(y |z)
I Ordered Markov property: y ⊥⊥ x | z

If the state or value of z is known (i.e. if the random variable
z is “instantiated”), evidence about x will not change our
belief about y , and vice versa.

We say that the z node is “closed” and that the trail between
x and y is “blocked” by the instantiated z . In other words,
knowing the value of z blocks the flow of evidence between x
and y .
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Serial connection x z y

I What can we say about the marginal distribution of (x , y)?
I By sum rule, joint probability distribution of (x , y) is

p(x , y) =
∫

p(x)p(z |x)p(y |z)dz

= p(x)
∫

p(z |x)p(y |z)dz

6= p(x)p(y)

I In a serial connection, if the state of z is unknown, then
evidence or information about x will influence our belief about
y , and the other way around. Evidence can flow through z
between x and y .

I We say that the z node is “open” and the trail between x and
y is “active”.
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Diverging connection x z y

I Graph for probabilistic PCA, factor analysis, ICA has such
connections (z correspond to the latents, x and y to the
observed)

I Graph: z influences both x and y . No directed connection
between x and y .

I Factorisation: p(x , y , z) = p(z)p(x |z)p(y |z)
I Ordered Markov property (with ordering z , x , y): y ⊥⊥ x | z

If the state or value z is known, evidence about x will not
change our belief about y , and vice versa.

I As in serial connection, knowing z closes the z node, which
blocks the trail between x and y .

Michael Gutmann Directed Graphical Models 20 / 45



Diverging connection x z y

I What can we say about the marginal distribution of (x , y)?
I By sum rule, joint probability distribution of (x , y) is

p(x , y) =
∫

p(z)p(x |z)p(y |z)dz

6= p(x)p(y)

I In a diverging connection, as in the serial connection, if the
state of z is unknown, then evidence or information about x
will influence our belief about y , and the other way around.
Evidence can flow through z between x and y .

I The z node is open and the trail between x and y is active.
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Converging connection x z y

I Graph for probabilistic PCA, factor analysis, ICA has such
connections (z corresponds to an observed, x and y to two
latents)

I Graph: x and y influence z . No direction connection between
x and y .

I Factorisation: p(x , y , z) = p(x)p(y)p(z |x , y)
I Ordered Markov property: x ⊥⊥ y

When we do not have evidence about z , evidence about x will
not change our belief about y , and vice versa.

I If no evidence about z is available, the z node is closed, which
blocks the trail between x and y .
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Converging connection x z y

I This means that the marginal distribution of (x , y) factorises:
p(x , y) = p(x)p(y)

I Conditional distribution of (x , y) given z?

p(x , y |z) = p(x , y , z)
p(z) = p(x)p(y)p(z |x , y)∫

p(x)p(y)p(z |x , y)dxdy
6= p(x |z)p(y |z)

This means that x 6⊥⊥ y | z .
I If evidence or information about z is available, evidence about

x will influence the belief about y , and vice versa.
I Information about z opens the z-node, and evidence can flow

between x and y .
I Note: information about z means that z or one of its

descendents is observed (see tutorials).
(A node w is a descendant of z if there is a directed path from z to
w .)
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Explaining away
Example: cpu power

pc

I One day your computer does not start and you bring it to a
repair shop. You think the issue could be the power unit or
the cpu.

I Investigating the power unit shows that it is damaged. Is the
cpu fine?

I Without further information, finding out that the power unit is
damaged typically reduces our belief that the cpu is damaged

power 6⊥⊥ cpu | pc
I Finding out about the damage to the power unit explains

away the observed start-issues of the computer.
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Summary

Connection z node p(x , y) p(x , y |z)
x z y default: open x 6⊥⊥ y x ⊥⊥ y | z

instantiated: closed
x z y default: open x 6⊥⊥ y x ⊥⊥ y | z

instantiated: closed
x z y default: closed x ⊥⊥ y x 6⊥⊥ y | z

with evidence: opens

Think of the z node as a valve or gate through which evidence
(probability mass) can flow. Depending on the type of the connection,
it’s default state is either open or closed. Instantiation/evidence acts as a
switch on the valve.



I-equivalence

I Same independence assertions for
x z y x z y x z y

I The graphs have different causal interpretations
Consider e.g. x ≡ rain; z ≡ street wet; y ≡ car accident

I This means that based on statistical dependencies
(observational data) alone, we cannot select among the
graphs and thus determine what causes what.

I The three directed graphs are said to be
independence-equivalent (I-equivalent).
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Program

1. Definition of directed graphical models

2. Three canonical connections in a DAG and their properties
Serial connection
Diverging connection
Converging connection
I-equivalence

3. Independencies in directed graphical models
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Program

1. Definition of directed graphical models

2. Three canonical connections in a DAG and their properties

3. Independencies in directed graphical models
D-separation
Directed local Markov property
Equivalences of the different Markov properties and the

factorisation
Markov blanket
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Further independence relations

I Given the DAG below, what can we say about the
independencies for the set of probability distributions that
factorise over the graph?

I Is x1 ⊥⊥ x2? x1 ⊥⊥ x2 | x6? x2 ⊥⊥ x3 | {x1, x4}?
I Ordered Markov properties give some independencies.
I Limitation: it only allows us to condition on parent sets.
I Directed separation (d-separation) gives further

independencies.

x1

x2

x3

x4

x5

x6
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D-separation

Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and Z = {z1, . . . , zr} be
three disjoint sets of nodes in the graph. Assume all zi are
observed (instantiated).

I Two nodes xi and yj are said to be d-separated by Z if all
trails between them are blocked by Z .

I The sets X and Y are said to be d-separated by Z if every trail
from any variable in X to any variable in Y is blocked by Z .
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D-separation

A trail between nodes x and y is blocked by Z if there is a node b
on the trail such that
1. either b is part of a head-tail or tail-tail connection along the

trail and b is in Z ,

x b y x b y

2. or b is part of a head-head (collider) connection along the
trail and neither b nor any of its descendants are in Z .

x b y

Michael Gutmann Directed Graphical Models 31 / 45



D-separation and conditional independence

Theorem: If X and Y are d-separated by Z
then X ⊥⊥ Y | Z for all probability distributions that factorise over
the DAG.

For those interested: A proof can be found in Section 2.8 of Bayesian Networks
– An Introduction by Koski and Noble (not examinable)

Important because:
1. the theorem allows us to read out (conditional)

independencies from the graph
2. no restriction on the sets X ,Y ,Z
3. the theorem shows that independencies detected by

d-separation do always hold. They are “true positives”
(“soundness of d-separation”).
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D-separation and conditional independence

Theorem: If X and Y are not d-separated by Z
then X 6⊥⊥ Y | Z in some probability distributions that factorise
over the DAG.

For those interested: A proof sketch can be found in Section 3.3.1 of
Probabilistic Graphical Models by Koller and Friedman (not examinable).

“not d-separated” is also called “d-connected”
6⊥⊥ means statistically dependent
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D-separation and conditional independence

I It can also be that d-connected variables are independent for
some distributions.

I Example (Koller, Example 3.3): p(x , y) with x , y ∈ {0, 1} and

p(y = 0|x = 0) = a p(y = 0|x = 1) = a

for a > 0 and some non-zero p(x = 0).
I Graph has arrow from x to y . Variables are not d-separated.

x y

I p(y = 0) = ap(x = 0) + ap(x = 1) = a,
which is p(y = 0|x) for all x .

I p(y = 1) = (1− a)p(x = 0) + (1− a)p(x = 1) = 1− a,
which is p(y = 1|x) for all x .

I Hence: p(y |x) = p(y) so that x ⊥⊥ y .
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D-separation and conditional independence

I This means that d-separation does generally not reveal all
independencies in all probability distributions that factorise
over the graph.

I In other words, individual probability distributions that
factorise over the graph may have further independencies not
included in the set obtained by d-separation.

I We say that d-separation is not “complete” (“recall-rate” is
not guaranteed to be 100%).
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Recipe to determine whether two nodes are d-separated

1. Determine all trails between x and y (note: direction of the
arrows does here not matter).

2. For each trail:
i Determine the default state of all nodes on the trail.

I open if part of a head-tail or a tail-tail connection
I closed if part of a head-head connection

ii Check whether the set of observed nodes Z switches the state of
the nodes on the trail.

iii The trail is blocked if it contains a closed node.
3. The nodes x and y are d-separated if all trails between them

are closed.
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Example: Are x1 and x2 d-separated?

Follows from ordered Markov property, but let us answer it with d-separation.
1. Determine all trails between x1

and x2
2. For trail x1, x4, x2

i default state
ii conditioning set is empty
iii ⇒ Trail is blocked
For trail x1, x3, x5, x4, x2
i default state
ii conditioning set is empty
iii ⇒ Trail is blocked
Trail x1, x3, x5, x6, x4, x2 is
blocked too (same arguments).

3. ⇒ x1 and x2 are d-separated.

x1

x2

x3

x4

x5

x6

closed

open

closed

open

x1 ⊥⊥ x2 for all probabil-
ity distributions that factor-
ise over the graph.
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Example: Are x1 and x2 d-separated by x6?

1. Determine all trails between x1
and x2

2. For trail x1, x4, x2
i default state
ii influence of x6
iii ⇒ Trail not blocked
No need to check the other
trails: x1 and x2 are not
d-separated by x6

x1

x2

x3

x4

x5

x6

closedopened by x6

x1 ⊥⊥ x2 | x6 does generally
not hold for probability dis-
tributions that factorise over
the graph.

Michael Gutmann Directed Graphical Models 38 / 45



Example: Are x2 and x3 d-separated by x1 and x4?

1. Determine all trails between x2
and x3

2. For trail x3, x1, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked
For trail x3, x5, x4, x2
i default state
ii influence of {x1, x4}
iii ⇒ Trail blocked
Trail x3, x5, x6, x4, x2 is blocked
too (same arguments).

3. ⇒ x2 and x3 are d-separated by
x1 and x4.

x1

x2

x3

x4

x5

x6

open

closed

closed

open

closed

open

closed

closed

x2 ⊥⊥ x3 | {x1, x4} for all
probability distributions that
factorise over the graph.
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Directed local Markov property

I The independencies that you can obtain with the ordered
Markov property depend on the topological ordering chosen.

I We introduce the “directed local Markov property” that does
not depend on the ordering but only on the graph.

I We say that p(x) satisfies the directed local Markov property
with respect to a given DAG with parent sets pai if

xi ⊥⊥ (nondesc(xi) \ pai) | pai

holds for all i , where nondesc(xi) denotes the
non-descendants of xi .

I In other words, p(x) satisfying the directed local Markov
property means that

p(xi |nondesc(xi)) = p(xi |pai) for all i
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Directed local Markov property

I We now use d-separation to show an equivalence between
p(x) satisfying the ordered and the local Markov property.

I Result: If p(x) satisfies the ordered Markov property it also
satisfies the directed local Markov property and vice versa:

xi ⊥⊥ (prei \ pai) |pai ⇐⇒ xi ⊥⊥ (nondesc(xi) \ pai) |pai

where nondesc(xi) denotes the non-descendants of xi .

xi ≡ x7
pa7 = {x4, x5, x6}

pre7 = {x1, x2, . . . , x6}
nondesc(x7) in blue

x1 x2

x4
x5

x6

x8 x7 x9
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Directed local Markov property

xi ⊥⊥ prei \ pai |pai ⇐ xi ⊥⊥ nondesc(xi) \ pai |pai follows because
{x1, . . . , xi−1} ⊆ nondesc(xi) for all topological orderings

For ⇒ consider all trails from xi to {nondesc(xi) \ pai}.

Two cases: move upwards or downwards:

(1) upward trails are blocked by the parents
(2) downward trails must contain a head-
head (collider) connection because the xj ∈
{nondesc(xi) \ pai} is a non-descendant.
These paths are blocked because the collider
node or its descendants are never part of pai .

The result now follows because all paths from
xi to all elements in {nondesc(xi) \ pai} are
blocked.

x1 x2

x4
x5

x6

x8 x7 x9
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Summary of the equivalences

Given a DAG with nodes (random variables) xi and parent sets pai , we
have the following equivalences:

p(x) factorises over the DAG p(x) =
∏d

i=1 p(xi |pai )
m

p(x) satisfies the ordered MP xi ⊥⊥ prei \ pai | pai for all i
m

p(x) satisfies the directed local MP xi ⊥⊥ nondesc(xi ) \ pai | pai for all i
m

p(x) satisfies the directed global MP independencies asserted by d-separation

(MP: Markov property)

Broadly speaking, the graph serves two related purposes:

1. it tells us how distributions factorise

2. it represents the independence assumptions made
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Markov blanket
What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From d-separation:
I Isolate x from its

ancestors
⇒ condition on parents

I Isolate x from its
descendants
⇒ condition on children

I Deal with collider
connection
⇒ condition on
co-parents
(other parents of the
children of x)

x

In directed graphical models, the par-
ents, children, and co-parents of x are
called its Markov blanket, denoted by
MB(x). We have
x ⊥⊥ {all vars \ x \ MB(x)} | MB(x).
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Program recap

1. Definition of directed graphical models
Definition via factorisation according to the graph
Definition via ordered Markov property
Derive independencies from the ordered Markov property with different

topological orderings

2. Three canonical connections in a DAG and their properties
Serial connection
Diverging connection
Converging connection
I-equivalence

3. Independencies in directed graphical models
D-separation
Directed local Markov property
Equivalences of the different Markov properties and the factorisation
Markov blanket
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