From Independencies to Directed Graphs

Michael Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, University of Edinburgh

Spring Semester 2020

Recap

- We talked about reasonably weak assumption to facilitate the efficient representation of a probabilistic model
- Independence assumptions reduce the number of interacting variables
- Parametric assumptions restrict the way the variables may interact.
- (Conditional) independence assumptions lead to a factorisation of the pdf/pmf, e.g.
 - $\blacktriangleright p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$
 - $p(x_1,...,x_d) = p(x_d|x_{d-3},x_{d-2},x_{d-1})p(x_1,...,x_{d-1})$

- 1. Equivalence of factorisation and ordered Markov property
- 2. Understanding models from their factorisation

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

Chain rule

Iteratively applying the product rule allows us to factorise any joint pdf (pmf) $p(\mathbf{x}) = p(x_1, x_2, \dots, x_d)$ into product of conditional pdfs.

$$p(\mathbf{x}) = p(x_1)p(x_2, \dots, x_d | x_1)$$

= $p(x_1)p(x_2 | x_1)p(x_3, \dots, x_d | x_1, x_2)$
= $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)p(x_4, \dots, x_d | x_1, x_2, x_3)$
:
= $p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \dots p(x_d | x_1, \dots, x_{d-1})$
= $p(x_1) \prod_{i=2}^d p(x_i | x_1, \dots, x_{i-1})$
= $\prod_{i=1}^d p(x_i | \text{pre}_i)$

with $\operatorname{pre}_i = \operatorname{pre}(x_i) = \{x_1, \ldots, x_{i-1}\}$, $\operatorname{pre}_1 = \emptyset$ and $p(x_1|\emptyset) = p(x_1)$ The chain rule can be applied to any ordering x_{k_1}, \ldots, x_{k_d} . Different orderings give different factorisations.

From (conditional) independence to factorisation

$p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$ for the ordering x_1, \ldots, x_d

- For each x_i, we condition on all previous variables in the ordering.
- Assume that, for each *i*, there is a minimal subset of variables $\pi_i \subseteq \text{pre}_i$ such that $p(\mathbf{x})$ satisfies

$$x_i \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$$

for all *i*.

- $p(\mathbf{x})$ is then said to satisfy the ordered Markov property .
- By definition of conditional independence: $p(x_i|x_1,...,x_{i-1}) = p(x_i|\text{pre}_i) = p(x_i|\pi_i)$
- With the convention $\pi_1 = \emptyset$, we obtain the factorisation

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d p(x_i|\pi_i)$$

See later: the π_i correspond to the parents of x_i in graphs.

From (conditional) independence to factorisation

- Assume the variables are ordered as x_1, \ldots, x_d , let $pre_i = \{x_1, \ldots, x_{i-1}\}$ and $\pi_i \subseteq pre_i$.
- We have seen that

if
$$x_i \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$$
 for all i
then $p(x_1, \ldots, x_d) = \prod_{i=1}^d p(x_i \mid \pi_i)$

- The chain rule corresponds to the case where $\pi_i = \text{pre}_i$.
- Do we also have the reverse?

$$\text{if} \qquad p(x_1, \dots, x_d) = \prod_{i=1}^d p(x_i | \pi_i) \quad \text{with } \pi_i \subseteq \text{pre}_i$$

$$\text{then} \qquad x_i \perp (\text{pre}_i \setminus \pi_i) \mid \pi_i \text{ for all } i?$$

From factorisation to (conditional) independence

- Let us first check whether $x_d \perp (\operatorname{pre}_d \setminus \pi_d) \mid \pi_d$ holds.
- We do that by checking whether

$$p(x_d | \overbrace{x_1, \ldots, x_{d-1}}^{\operatorname{pre}_d}) = p(x_d | \pi_d)$$

Since

$$p(x_d|x_1,...,x_{d-1}) = \frac{p(x_1,...,x_d)}{p(x_1,...,x_{d-1})}$$

we start with computing $p(x_1, \ldots, x_{d-1})$.

8 / 21

From factorisation to (conditional) independence

Assume that the x_i are ordered as x_1, \ldots, x_d and that $p(x_1, \ldots, x_d) = \prod_{i=1}^d p(x_i | \pi_i)$ with $\pi_i \subseteq \text{pre}_i$.

We compute $p(x_1, \ldots, x_{d-1})$ using the sum rule:

$$p(x_1, \dots, x_{d-1}) = \int p(x_1, \dots, x_d) dx_d$$

=
$$\int \prod_{i=1}^d p(x_i | \pi_i) dx_d$$

=
$$\int \prod_{i=1}^{d-1} p(x_i | \pi_i) p(x_d | \pi_d) dx_d \quad (x_d \notin \pi_i, i < d)$$

=
$$\prod_{i=1}^{d-1} p(x_i | \pi_i) \int p(x_d | \pi_d) dx_d$$

=
$$\prod_{i=1}^{d-1} p(x_i | \pi_i)$$

From factorisation to (conditional) independence

Hence:

$$p(x_d|x_1, \dots, x_{d-1}) = \frac{p(x_1, \dots, x_d)}{p(x_1, \dots, x_{d-1})}$$
$$= \frac{\prod_{i=1}^d p(x_i|\pi_i)}{\prod_{i=1}^{d-1} p(x_i|\pi_i)}$$
$$= p(x_d|\pi_d)$$

And $p(x_d|x_1, \ldots, x_{d-1}) = p(x_d|\text{pre}_d) = p(x_d|\pi_d)$ means that $x_d \perp (\text{pre}_d \setminus \pi_d) \mid \pi_d$ as desired.

 $p(x_1, \ldots, x_{d-1})$ has the same form as $p(x_1, \ldots, x_d)$: apply same procedure to all $p(x_1, \ldots, x_k)$, for smaller and smaller $k \leq d-1$

Proves that (1) $p(x_1, ..., x_k) = \prod_{i=1}^k p(x_i | \pi_i)$ and that (2) factorisation implies $x_i \perp (\text{pre}_i \setminus \pi_i) | \pi_i$ for all i

Brief summary

- Let x = (x₁,..., x_d) be a d-dimensional random vector with pdf/pmf p(x).
- Denote the predecessors of x_i in the ordering by $\operatorname{pre}(x_i) = \operatorname{pre}_i = \{x_1, \ldots, x_{i-1}\}$, and let $\pi_i \subseteq \operatorname{pre}_i$.

$$p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \pi_i) \iff x_i \perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i \text{ for all } i$$

Equivalence of factorisation and ordered Markov property of the pdf/pmf

Why does it matter?

• Denote the predecessors of x_i in the ordering by $pre_i = \{x_1, \dots, x_{i-1}\}$, and let $\pi_i \subseteq pre_i$.

$$p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \pi_i) \iff x_i \perp (\operatorname{pre}_i \setminus \pi_i) | \pi_i \text{ for all } i$$

- Why does it matter?
 - Relatively strong result: It holds for sets of pdfs/pmfs and not only single instances
 - For all members of the set: Fewer numbers are needed for their representation (computational advantage)
 - Given the independencies, we know what form p(x) must have (helpful for specifying models)
 - Increased understanding of the properties of the model (independencies and data generation mechanism)
 - Visualisation as a graph

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

- 2. Understanding models from their factorisation
 - Visualisation as a directed graph
 - Description of directed graphs and topological orderings

Visualisation as a directed graph

If $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \pi_i)$ with $\pi_i \subseteq \text{pre}_i$ we can visualise the model as a graph with the random variables x_i as nodes, and directed edges that point from the $x_j \in \pi_i$ to the x_i . This results in a directed acyclic graph (DAG).

Example:

$$p(x_1, x_2, x_3, x_4, x_5) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_3)p(x_5|x_2)$$

Visualisation as a directed graph

Example:

 $p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1, x_2)p(x_4|x_1, x_2, x_3)$

Factorisation obtained by chain rule \equiv fully connected directed acyclic graph.

- Directed graph: graph where all edges are directed
- Directed acyclic graph (DAG): by following the direction of the arrows you will never visit a node more than once
- *x_i* is a parent of *x_j* if there is a (directed) edge from *x_i* to *x_j*. The set of parents of *x_i* in the graph is denoted by pa(*x_i*) = pa_i, e.g. pa(*x*₃) = pa₃ = {*x*₁, *x*₂}.
- *x_j* is a child of *x_i* if *x_i* ∈ pa(*x_j*), e.g. *x₃* and *x₅* are children of *x₂*.

- A path or trail from x_i to x_j is a sequence of distinct connected nodes starting at x_i and ending at x_j. The direction of the arrows does *not* matter. For example: x₅, x₂, x₃, x₁ is a trail.
- A directed path is a sequence of connected nodes where we follow the direction of the arrows. For example: x₁, x₃, x₄ is a directed path. But x₅, x₂, x₃, x₁ is not a directed path.

- ► The ancestors anc(x_i) of x_i are all the nodes where a directed path leads to x_i. For example, anc(x₄) = {x₁, x₃, x₂}.
- The descendants desc(x_i) of x_i are all the nodes that can be reached on a directed path from x_i. For example, desc(x₁) = {x₃, x₄}.

(Note: sometimes, x_i is included in the set of ancestors and descendants)

The non-descendents of x_i are all the nodes in a graph without x_i and without the descendants of x_i. For example, nondesc(x₃) = {x₁, x₂, x₅}

- Topological ordering: an ordering (x₁,..., x_d) of some variables x_i is topological relative to a graph if parents come before their children in the ordering. (whenever there is a directed edge from x_i to x_j, x_i occurs prior to x_j in the ordering.)
- There is always at least one such ordering for DAGs.
- For a pdf p(x), assume you order the random variables x_i in some manner and compute the corresponding factorisation, e.g. p(x) = p(x₁)p(x₂)p(x₃|x₁, x₂)p(x₄|x₃)p(x₅|x₂)
- When you visualise the factorised pdf as a graph, the graph is always such that the ordering used for the factorisation is topological to it.
- The π_i in the factorisation are equal to the parents pa_i in the graph. We may call both sets the "parents" of x_i.

- Chain rule
- Ordered Markov property implies factorisation
- Factorisation implies ordered Markov property

2. Understanding models from their factorisation

- Visualisation as a directed graph
- Description of directed graphs and topological orderings