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Recap

I We talked about reasonably weak assumption to facilitate the
efficient representation of a probabilistic model

I Independence assumptions reduce the number of interacting
variables

I Parametric assumptions restrict the way the variables may
interact.

I (Conditional) independence assumptions lead to a
factorisation of the pdf/pmf, e.g.

I p(x, y, z) = p(x)p(y)p(z)
I p(x1, . . . , xd) = p(xd |xd−3, xd−2, xd−1)p(x1, . . . , xd−1)
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Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation
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Program

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation
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Chain rule
Iteratively applying the product rule allows us to factorise any joint pdf
(pmf) p(x) = p(x1, x2, . . . , xd) into product of conditional pdfs.

p(x) = p(x1)p(x2, . . . , xd |x1)
= p(x1)p(x2|x1)p(x3, . . . , xd |x1, x2)
= p(x1)p(x2|x1)p(x3|x1, x2)p(x4, . . . , xd |x1, x2, x3)
...
= p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd |x1, . . . xd−1)

= p(x1)
d∏

i=2
p(xi |x1, . . . , xi−1)

=
d∏

i=1
p(xi |prei)

with prei = pre(xi) = {x1, . . . , xi−1}, pre1 = ∅ and p(x1|∅) = p(x1)
The chain rule can be applied to any ordering xk1 , . . . xkd . Different
orderings give different factorisations.
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From (conditional) independence to factorisation
p(x) =

∏d
i=1 p(xi |prei) for the ordering x1, . . . , xd

I For each xi , we condition on all previous variables in the
ordering.

I Assume that, for each i , there is a minimal subset of variables
πi ⊆ prei such that p(x) satisfies

xi ⊥⊥ (prei \ πi) | πi

for all i .
I p(x) is then said to satisfy the ordered Markov property .
I By definition of conditional independence:

p(xi |x1, . . . , xi−1) = p(xi |prei) = p(xi |πi)
I With the convention π1 = ∅, we obtain the factorisation

p(x1, . . . , xd) =
d∏

i=1
p(xi |πi)

I See later: the πi correspond to the parents of xi in graphs.
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From (conditional) independence to factorisation

I Assume the variables are ordered as x1, . . . , xd , let
prei = {x1, . . . xi−1} and πi ⊆ prei .

I We have seen that

if xi ⊥⊥ (prei \ πi) | πi for all i

then p(x1, . . . , xd) =
d∏

i=1
p(xi |πi)

I The chain rule corresponds to the case where πi = prei .
I Do we also have the reverse?

if p(x1, . . . , xd) =
d∏

i=1
p(xi |πi) with πi ⊆ prei

then xi ⊥⊥ (prei \ πi) | πi for all i ?
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From factorisation to (conditional) independence

I Let us first check whether xd ⊥⊥ (pred \ πd) | πd holds.
I We do that by checking whether

p(xd |
pred︷ ︸︸ ︷

x1, . . . , xd−1) = p(xd |πd)

holds.
I Since

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1)

we start with computing p(x1, . . . , xd−1).
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From factorisation to (conditional) independence
Assume that the xi are ordered as x1, . . . , xd and that
p(x1, . . . , xd) =

∏d
i=1 p(xi |πi) with πi ⊆ prei .

We compute p(x1, . . . , xd−1) using the sum rule:

p(x1, . . . , xd−1) =
∫

p(x1, . . . , xd)dxd

=
∫ d∏

i=1
p(xi |πi)dxd

=
∫ d−1∏

i=1
p(xi |πi)p(xd |πd)dxd (xd /∈ πi , i < d)

=
d−1∏
i=1

p(xi |πi)
∫

p(xd |πd)dxd

=
d−1∏
i=1

p(xi |πi)
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From factorisation to (conditional) independence
Hence:

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1)

=
∏d

i=1 p(xi |πi)∏d−1
i=1 p(xi |πi)

= p(xd |πd)

And p(xd |x1, . . . , xd−1) = p(xd |pred) = p(xd |πd) means that
xd ⊥⊥ (pred \ πd) | πd as desired.

p(x1, . . . , xd−1) has the same form as p(x1, . . . , xd): apply same
procedure to all p(x1, . . . , xk), for smaller and smaller k ≤ d − 1

Proves that
(1) p(x1, . . . , xk) =

∏k
i=1 p(xi |πi) and that

(2) factorisation implies xi ⊥⊥ (prei \ πi) | πi for all i
Michael Gutmann From Independencies to Directed Graphs 10 / 21



Brief summary

I Let x = (x1, . . . , xd) be a d-dimensional random vector with
pdf/pmf p(x).

I Denote the predecessors of xi in the ordering by
pre(xi) = prei = {x1, . . . , xi−1}, and let πi ⊆ prei .

p(x) =
d∏

i=1
p(xi |πi)⇐⇒ xi ⊥⊥ (prei \ πi) | πi for all i

I Equivalence of factorisation and ordered Markov property of
the pdf/pmf
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Why does it matter?

I Denote the predecessors of xi in the ordering by
prei = {x1, . . . , xi−1}, and let πi ⊆ prei .

p(x) =
d∏

i=1
p(xi |πi)⇐⇒ xi ⊥⊥ (prei \ πi) | πi for all i

I Why does it matter?
I Relatively strong result: It holds for sets of pdfs/pmfs and not

only single instances
I For all members of the set: Fewer numbers are needed for their

representation (computational advantage)
I Given the independencies, we know what form p(x) must have

(helpful for specifying models)
I Increased understanding of the properties of the model

(independencies and data generation mechanism)
I Visualisation as a graph
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Program

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation

Michael Gutmann From Independencies to Directed Graphs 13 / 21



Program

1. Equivalence of factorisation and ordered Markov property

2. Understanding models from their factorisation
Visualisation as a directed graph
Description of directed graphs and topological orderings
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Visualisation as a directed graph

If p(x) =
∏d

i=1 p(xi |πi) with πi ⊆ prei we can visualise the model
as a graph with the random variables xi as nodes, and directed
edges that point from the xj ∈ πi to the xi . This results in a
directed acyclic graph (DAG).
Example:

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

x1 x2

x3

x4

x5
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Visualisation as a directed graph

Example:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

x1 x2

x3

x4

Factorisation obtained by chain rule ≡ fully connected directed
acyclic graph.
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Graph concepts

I Directed graph: graph where all edges are directed
I Directed acyclic graph (DAG): by following the direction of

the arrows you will never visit a node more than once
I xi is a parent of xj if there is a (directed) edge from xi to xj .

The set of parents of xi in the graph is denoted by
pa(xi) = pai , e.g. pa(x3) = pa3 = {x1, x2}.

I xj is a child of xi if xi ∈ pa(xj), e.g. x3 and x5 are children of
x2.

x1 x2

x3

x4

x5
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Graph concepts

I A path or trail from xi to xj is a sequence of distinct connected
nodes starting at xi and ending at xj . The direction of the
arrows does not matter. For example: x5, x2, x3, x1 is a trail.

I A directed path is a sequence of connected nodes where we
follow the direction of the arrows. For example: x1, x3, x4 is a
directed path. But x5, x2, x3, x1 is not a directed path.

x1 x2

x3

x4

x5
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Graph concepts

I The ancestors anc(xi) of xi are all the nodes where a directed
path leads to xi . For example, anc(x4) = {x1, x3, x2}.

I The descendants desc(xi) of xi are all the nodes that can be
reached on a directed path from xi . For example,
desc(x1) = {x3, x4}.
(Note: sometimes, xi is included in the set of ancestors and
descendants)

I The non-descendents of xi are all the nodes in a graph
without xi and without the descendants of xi . For example,
nondesc(x3) = {x1, x2, x5}

x1 x2

x3

x4

x5
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Graph concepts

I Topological ordering: an ordering (x1, . . . , xd) of some
variables xi is topological relative to a graph if parents come
before their children in the ordering.
(whenever there is a directed edge from xi to xj , xi occurs prior to
xj in the ordering.)

I There is always at least one such ordering for DAGs.
I For a pdf p(x), assume you order the random variables xi in

some manner and compute the corresponding factorisation,
e.g. p(x) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

I When you visualise the factorised pdf
as a graph, the graph is always such
that the ordering used for the
factorisation is topological to it.

I The πi in the factorisation are equal to
the parents pai in the graph. We may
call both sets the “parents” of xi .

x1 x2

x3

x4

x5

Michael Gutmann From Independencies to Directed Graphs 20 / 21



Program recap

1. Equivalence of factorisation and ordered Markov property
Chain rule
Ordered Markov property implies factorisation
Factorisation implies ordered Markov property

2. Understanding models from their factorisation
Visualisation as a directed graph
Description of directed graphs and topological orderings
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