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Exercise 1. Inverse transform sampling

The cumulative distribution function (cdf) Fx(α) of a (continuous or discrete) random variable x indicates
the probability that x takes on values smaller or equal to α,

Fx(α) = P(x ≤ α). (1)

For continuous random variables, the cdf is defined via the integral

Fx(α) =

∫ α

−∞
px(u)du, (2)

where px denotes the pdf of the random variable x (u is here a dummy variable). Note that Fx maps the
domain of x to the interval [0, 1]. For simplicity, we here assume that Fx is invertible.

For a continuous random variable x with cdf Fx show that the random variable y = Fx(x) is uniformly
distributed on [0, 1].
Hint: Determine the cdf of y.

Importantly, this implies that for a random variable y which is uniformly distributed on [0, 1], the trans-
formed random variable F−1x (y) has cdf Fx. This gives rise to a method called “inverse transform sam-
pling” to generate n iid samples of a random variable x with cdf Fx. Given a target cdf Fx, the method
consists of:

• calculating the inverse F−1x

• sampling n iid random variables uniformly distributed on [0, 1]: yi ∼ U(0, 1), i = 1, . . . , n.

• transforming each sample by F−1x : xi = F−1x (yi), i = 1, . . . , n.

By construction of the method, the xi are n iid samples of x.

Solution. We start with the cumulative distribution function (cdf) Fy for y,

Fy(β) = P(y ≤ β). (S.1)

Since Fx(x) maps x to [0, 1], Fy(β) is zero for β < 0 and one for β > 1. We next consider
β ∈ [0, 1].

Let α be the value of x that Fx maps to β, i.e. Fx(α) = β, which means α = F−1x (β). Since Fx
is a non-decreasing function, we have

Fy(β) = P(y ≤ β) = P(Fx(x) ≤ β) = P(x ≤ F−1x (β)) = P(x ≤ α) = Fx(α). (S.2)

Since α = F−1x (β) we obtain
Fy(β) = Fx(F−1x (β)) = β (S.3)

The cdf Fy is thus given by

Fy(β) =


0 if β < 0

β if β ∈ [0, 1]

1 if β > 1

(S.4)

which is the cdf of a uniform random variable on [0, 1]. Hence y = Fx(x) is uniformly distributed
on [0, 1].
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Exercise 2. Sampling from a Laplace random variable

A Laplace random variable x of mean zero and variance one has the density p(x)

p(x) =
1√
2

exp
(
−
√

2|x|
)

x ∈ R. (3)

Use inverse transform sampling to generate n iid samples from x.

Solution. The main task is to compute the cumulative distribution function (cdf) Fx of x and
its inverse. The cdf is by definition

Fx(α) =

∫ α

−∞

1√
2

exp
(
−
√

2|u|
)

du. (S.5)

We first consider the case where α ≤ 0. Since −|u| = u for u ≤ 0, we have

Fx(α) =

∫ α

−∞

1√
2

exp
(√

2u
)

du (S.6)

=
1

2
exp

(√
2u
) ∣∣∣∣α
−∞

(S.7)

=
1

2
exp

(√
2α
)
. (S.8)

For α > 0, we have

Fx(α) =

∫ α

−∞

1√
2

exp
(
−
√

2|u|
)

du (S.9)

= 1−
∫ ∞
α

1√
2

exp
(
−
√

2|u|
)

du (S.10)

where we have used the fact that the pdf has to integrate to one. For values of u > 0, −|u| = −u,
so that

Fx(α) = 1−
∫ ∞
α

1√
2

exp
(
−
√

2u
)

du (S.11)

= 1 +
1

2
exp

(
−
√

2u
) ∣∣∣∣∞

α

(S.12)

= 1− 1

2
exp

(
−
√

2α
)
. (S.13)

In total, for α ∈ R, we thus have

Fx(α) =

{
1
2 exp

(√
2α
)

if α ≤ 0

1− 1
2 exp

(
−
√

2α
)

if α > 0
(S.14)

Figure 1 visualises Fx(α).

As the figure suggests, there is a unique inverse to y = Fx(α). For y ≤ 1/2, we have

y =
1

2
exp

(√
2α
)

(S.15)

log(2y) =
√

2α (S.16)

α =
1√
2

log(2y) (S.17)
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Figure 1: The cumulative distribution function Fx(α) for a Laplace distributed random variable.

For y > 1/2, we have

y = 1− 1

2
exp

(
−
√

2α
)

(S.18)

−y = −1 +
1

2
exp

(
−
√

2α
)

(S.19)

1− y =
1

2
exp

(
−
√

2α
)

(S.20)

log(2− 2y) = −
√

2α (S.21)

α = − 1√
2

log(2− 2y) (S.22)

The function y 7→ g(y) that occurs in the log

g(y) =

{
2y if y ≤ 1

2

2− 2y if y > 1
2

(S.23)

is shown below and can be written as g(y) = 1− 2|y − 1/2|.

We thus can write the inverse F−1x (y) of the cdf y = Fx(α) as

F−1x (y) = −sign

(
y − 1

2

)
1√
2

log

[
1− 2

∣∣y − 1

2

∣∣] . (S.24)

To generate n iid samples from x, we first generate n iid samples yi that are uniformly distributed
on [0, 1], and then compute for each F−1x (yi). The properties of inverse transform sampling
guarantee that the xi,

xi = F−1x (yi) (S.25)

are independent and Laplace distributed.

Inverse transform sampling can be used to generate samples from many standard distributions.
For example, it allows one to generate Gaussian random variables from uniformly distributed
random variables. The method is called the Box-Muller transform, see e.g. https://en.
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wikipedia.org/wiki/Box-Muller_transform. How to generate the required samples from the
uniform distribution is a research field on its own, see e.g. https://en.wikipedia.org/wiki/

Random_number_generation and http://statweb.stanford.edu/~owen/mc/Ch-unifrng.pdf.

Exercise 3. Sampling from a restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a model for binary variables v = (v1, . . . , vn)> and h =
(h1, . . . , hm)> which asserts that the joint distribution of (v,h) can be described by the probability mass
function

p(v,h) ∝ exp
(
v>Wh + a>v + b>h

)
, (4)

where W is a n×m matrix, and a and b vectors of size n and m, respectively. Both the vi and hi take
values in {0, 1}. The vi are called the “visibles” variables since they are assumed to be observed while the
hi are the hidden variables since it is assumed that we cannot measure them (see the additional practice
material from tutorial 2).

Explain how to use Gibbs sampling to generate samples from the marginal p(v),

p(v) =

∑
h exp

(
v>Wh + a>v + b>h

)∑
h,v exp (v>Wh + a>v + b>h)

, (5)

for any given values of W, a, and b.

Hint: Use the results in the additional practice sheet of Tutorial 2.

Solution. In order to generate samples v(k) from p(v) we generate samples (v(k),h(k)) from
p(v,h) and then ignore the h(k).

Gibbs sampling is a MCMC method to produce a sequence of samples x(1),x(2),x(3), . . . that
follow a pdf/pmf p(x) (if the chain is run long enough). Assuming that x is d-dimensional, we
generate the next sample x(k+1) in the sequence from the previous sample x(k) by:

1. picking (randomly) an index i ∈ {1, . . . , d}

2. sampling x
(k+1)
i from p(xi | x(k)

\i ) where x
(k)
\i is vector x with xi removed, i.e. x

(k)
\i =

(x
(k)
1 , . . . , x

(k)
i−1, x

(k)
i+1, . . . , x

(k)
d )
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3. setting x(k+1) = (x
(k)
1 , . . . , x

(k)
i−1, x

(k+1)
i , x

(k)
i+1, . . . , x

(k)
d ).

For the RBM, the tuple (h,v) corresponds to x so that a xi in the above steps can either be a
hidden variable or a visible. Hence

p(xi | x\i) =

{
p(hi | h\i,v) if xi is a hidden variable hi

p(vi | v\i,h) if xi is a visible variable vi
(S.26)

(h\i denotes the vector h with element hi removed, and equivalently for v\i)

To compute the conditionals on the right hand side, we use the following result from Tutorial 2
(additional practice):

p(h|v) =
m∏
i=1

p(hi|v), p(hi = 1|v) =
1

1 + exp
(
−
∑

j vjWji − bi
) , (S.27)

p(v|h) =

n∏
i=1

p(vi|h), p(vi = 1|h) =
1

1 + exp
(
−
∑

jWijhj − ai
) . (S.28)

Given the independencies between the hiddens given the visibles and vice versa, we have

p(hi | h\i,v) = p(hi | v) p(vi | v\i,h) = p(vi | h) (S.29)

so that the expressions for p(hi = 1|v) and p(vi = 1|h) allow us to implement the Gibbs sampler.

Given the independencies, it makes further sense to sample the h and v variables in blocks: first
we sample all the hi given v, and then all the vi given the h (or vice versa). This is also known
as block Gibbs sampling.

In summary, given a sample (h(k),v(k)), we thus generate the next sample (h(k+1),v(k+1)) in
the sequence as follows:

• For all hi, i = 1, . . . ,m:

– compute phi = p(hi = 1|v(k))

– sample ui from a uniform distribution on [0, 1] and set h
(k+1)
i to 1 if ui ≤ phi .

• For all vi, i = 1, . . . , n):

– compute pvi = p(vi = 1|h(k+1))

– sample ui from a uniform distribution on [0, 1] and set v
(k+1)
i to 1 if ui ≤ pvi .

As final step, after sampling S pairs (h(k),v(k)), k = 1, . . . , S, the set of visibles v(k) form
samples from the marginal p(v).

5


