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These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the tutorial sheet.

Inverse transform sampling — Given we have a cdf Fx(α) which is invertible, we can
generate samples xi from our distribution px(x) using uniform samples yi ∼ U(0, 1),

Fx(α) = P(x ≤ α) =
∫ α

−∞
px(y)dy (1)

Using the inverse cdf F−1x (y), a sample xi ∼ px(x) can be generated using

xi = F−1x (yi) yi ∼ U(0, 1) (2)

Gibbs sampling — Given a multivariate pdf p(x) and an initial state x1 = (x11, . . . , x
1
d),

we obtain multivariate samples xk by sampling from a univariate distribution p(xi | x\i), and
updating individual variables many times.
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In the multidimensional space of x, the iterative Gibbs sampling process will appear as a path
in orthogonal axes. Like other MCMC methods, Gibbs sampling typically exhibits a warm-
up period, where the samples are not representative of the distribution p(x). For multi-modal
distributions Gibbs sampling may fail to sample from one or more modes, especially if the modes
do not overlap when projected onto any of axes.
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