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Exercise 1. Mazximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, ..., x4,
d
) = Hp($i|Pai§91‘) z; € {0,1} (1)
i=1

where the conditionals are represented by parametrised probability tables, For example, if pas = {x1,z2},
p(zs3|pas; 03) is represented as

p(zs = 1|x1,x2,03,.. 94)) 1 T
oL 0 0
62 10
03 0 1
o1 11

with O3 = (03,03,03,03), and where the superscripts j of 9§ enumerate the different states that the parents
can be in.

(a) Assuming that x; has m; parents, verify that the table parametrisation of p(x;|pa;; 0;) is equivalent
to writing p(x;|pa;; 0;) as

Si
1’1|paz, 0 H 95 1(z;=1,pa; 73)(1 _ 93) (z;=0,pa;=s) (2)

where S; = 2™ is the total number of states/configurations that the parents can be in, and 1(x; =
1,pa; = s) is one if x; = 1 and pa; = s, and zero otherwise.

Solution. The number of configurations that m binary parents can be in is given by 5.
The questions thus boils down to showing that p(x; = 1|pa; = k;0;) = 0F for any state
ke {1,...,S;} of the parents of x;. Since 1(x; = 1,pa;, = s) = 0 unless s = k, we have
indeed that

plai = Lpa; = k;0;) = | J](67)°(1 — 6)° | (6F)*m=hpai=hl (1 — gy Hm:=0pai=h) (g 1)
s#k

=1 (oF) ==tpa=k) (] _ gk)0 (S.2)
=k,

(b) For iid data D = {x1), ..., x("™} show that the likelihood can be represented as

H H Ma=1(1 — §%) =0 (3)

1=1s=1

where . _y is the number of times the pattern (x; = 1,pa; = s) occurs in the data D, and
equivalently for ny. _.



Solution. Since the data are iid, we have

= Hp(x(j); 6) (S.4)

where each term p(x); 8) factorises as in (1),

d
p(x9;0) = [ (= pal; 6,) (S.6)

=1

with ar( 2 denotlng the i-th element of x() and paﬁj) the corresponding parents. The

conditionals p( x; |pai ;8;) factorise further according to (2),

Si ) ) ) )
paP[pal; 0,) = T[ (63)1 0" =bpel=0) (1 — gz et =0pai?=s) (8.7)

s=1
so that

n d
=TT [I o= Ibal”; 6,) (S.8)

j=1i=1
no ()1 pal® ) :

— HHH 05 1(x;”’=1,pa, —s)( _ef)l(m —Opa —s) (89)
j=li=1s=1

Swapping the order of the products so that the product over the data points comes first,
we obtain

d Si n ) . ) .
6) = [T T [L(6) " =" =1 — o) 1ot =0 = (5.10)

i=1s=1j=1

U _

We next split the product over j into two products, one for all j where x;”” = 1, and one

for all j where x( D=0

Z

ST TT I ooy oo s

i=1s=1 j:
o) 1x§])_0
d S; ’ ‘ .
=11 (651 =Lpa =) 1T (1 — 65)1@=0pa?=s) (S.12)
i=1s=1 J ]
"EEJ):l xﬁ“:o
d S Y7 1(@W =1,pa@ —s) S 1z =0 a(”fs)
=[[I]@H>= (1= g5)2=r =0 (S.13)
i=1s=1
d S;
= [T =1 — o)== (S.14)
i=1s=1
where
n n ‘ ‘
Ny,—1 = Z 1(x; U) =1 pa(]) s) Ny,—0 = Z Il(xgj) = O,pagj) =5) (S.15)
j=1 j=1

is the number of times x; = 1 and x; = 0, respectively, with its parents being in state s.



(¢) Show that the log-likelihood decomposes into sums of terms that can be independently optimised,
and that each term corresponds to the log-likelihood for a Bernoulli model.

Solution. The log-likelihood ¢(0) equals

0(6) = log p(D; 6) (S.16)
d S;
zlogHH ri=1(] — gF)"wi=0 (S.17)
d SZ
=3 tog (07" (1 )"0 (S.18)
i=1 s=1
d S;
=) nj_ylog(65) + nj, g log(1 — 65) (S.19)
i=1 s=1

Since the parameters 67 are not coupled in any way, maximising £(8) can be achieved by
maximising each term ¢;5(0;) individually,

is(07) = g, —1 log(67) + ny,_olog(1 — 67). (S.20)

Moreover, ¢;5(6;) corresponds to the log-likelihood for a Bernoulli model with success
probability #; and data with nj _; number of ones and nj _, number of zeros.

(d) Referring to the lecture material, conclude that the mazimum likelihood estimates are given by

G ns_, _ Z;L L 1(a! ) —q pa(]) s) @
Yongotngo i 1(pal?) = s)

Solution. Given the result from the previous question, we can optimise each term ¢;5(67)
separately. Furthermore, each term formally corresponds to a log-likelihood for a Bernoulli
model, so that we can immediately use the results derived in the lecture, which gives

. n’

05 = —m=l S.21
i (5.2)

Since nj _; = > 7 (= ()—1 pa() s) and

7j=1
nd _, +n :Zn:ﬂ(m(”:l U) = " 1029 = 0, pal) — S.22
z;=1 z;=0 1 7pa’L 8) + Z (xz 7paz S) ( . )
j=1 j=1
= " 1(pay = s), (S.23)
j=1

which gives

s = == o . (S.24)

Hence, to determine éf , we first count the number of times the parents of z; are in state
s, which gives the denominator, and then among them, count the number of times z; = 1,
which gives the numerator.



Exercise 2. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(z]0) = 67(1 - 0)'=* p(0; o) = B(6; o, fo)

where x € {0,1}, 6 € [0,1], g = (w0, Bo), and

(¢)

(b)

B#; o, B) occ 0711 — 0P~ 0e]0,1] (5)

Given iid data D = {x1,...,x,} show that the posterior of 6 given D is

p(0|D) = B(0; o, Bn)
Qp = g + Ng=1 Bn = Bo + na=o

where ng—1 denotes the number of ones and n,—qg the number of zeros in the data.

Solution. This follows immediately from
p(0]D) ox L(O)p(6; xo) (3.25)

and from the expression for the likelihood function of the Bernoulli model (see above or
the lecture slides)

L(0) = §"==1(1 — 0)"==0, (S.26)
Inserting all expressions into (S.25) gives
p(B|D) o 6"+=1 (1 — )" ==06*0~ 1 (1 — )~ (S.27)
o 6010+n;c:1*1(1 _ 0)50+nx=0*1 (8.28)
X 3(9,040 + ngp—1, Bo —i—nz:o), (8.29)

which is the desired result. Since ag and Sy are updated by the counts of ones and zeros
in the data, these hyperparameters are also referred to as “pseudo-counts”. Alternatively,
one can think that they are the counts that are observed in another iid data set which has
been previously analysed and used to determine the prior.

Compute the mean of a Beta random variable f,

p(fia,8) =B(f;a,8)  fel0,1], (6)
using that )
a—1/1 _ mn\B—=17¢ _ _ ['(a)T(B)
| rera- s = Bes) = 55 (7
where B(a, 8) denotes the Beta function and where the Gamma function T'(t) is defined as
N = [ £ en(- s (8)

and satisfies T'(t + 1) = tT'(¢).
Hint: It will be useful to represent the partition function in terms of the Beta function.



Solution. We first write the partition function of p(f; «, 8) in terms of the Beta function

1
Aﬂaﬁ)=/‘ka1—fW* (5.30)
0
(5.31)

We then have that the mean E[f] is given by

t/fpﬁ,ﬁ (5.32)
= / freta—f (S.33)
:meéf%“atw* (3.34)
_ Bla+1,8)

- T (S.35)

Ta+1)I(B) T'(a+p)

~Tat1+8) (@3 (8-36)
_al(@)l(B)  T(a+p)

= @t A)l(a + B) T(a)T(B) (8.37)
-5 (S.38)

where we have used the definition of the Beta function in terms of the Gamma function
and the property I'(t 4+ 1) = tI'(¢).

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed data
point x equals the posterior mean of p(0|D), which in turn is given by

ap + Np=1

E@|ID) = ——.
(o) = Lot ret )
Solution. We obtain
1
p(z =1|D) = / p(z = 1,0|D)do (sum rule) (S.39)
0
1
= / p(z = 1|0, D)p(0|D)do (product rule) (S.40)
0
1
:/;mrqw OD)Yd0  (x 1L D|9) (S.41)
0
1
= [ 0p(0|D)d (S.42)
0
= E[0|D] (S.43)



From the previous question we know the mean of a Beta random variable. Since 6 ~
B(0; oy, Br), we obtain

p(z = 1|D) = E[9|D] (S.44)
= anai—:ﬁn (S.45)
- ap + njoj-l-n;;l—i- MNz=0 (5.46)
_ aio++ﬂ7(l)$+ln (S.47)

where the last equation follows from the fact that n = n,—g + n,—1. Note that for n — oo,
the posterior mean tends to the MLE ngz—;/n.

Exercise 3. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Ezercise 1 and the notation follows that exercise. We consider the
Bayesian model

p(x|0) = Hp x;|pa;, 6;) x; € {0,1} (10)
p(0; o, By) = HHB af,mﬁio) (11)
i=1s=1

where p(z;|pa;, 0;) is defined via (2), ag is a vector of hyperparameters containing all o3 o, By the vector
containing all B}, and as before B denotes the Beta distribution. Under the prior, all parameters are
independent.

For iid data D = {xW) ... x("™} show that

p(6D) = H 1186;.;,.5:.) (12)

where
S _ S S S _ S S
ai,n - ai,O + nmi:1 in ﬂi,O + nzizo (13)

and that the parameters are also independent under the posterior.

Solution. We start with
p(0|D) x p(D[6)p(0; axo, By). (S.48)



Inserting the expression for p(D|@) given in (3) and the assumed form of the prior gives

d S; . . d S;
p(OD) oc [T TT0)™ =1 (1 = 7)== [T T B(6;: 050, 550) (S.49)
i=1s=1 i=1s=1
d S;
o [TTL@) ™= (1 = 6"~ B(03; g, Bi0) (8.50)
i=1s=1
d S;
o [TTT () = (1= o) e o) o (1 = g5) o™ (8.51)
i=1s=1
d S;
o JT Loy o=t gy oo™ (5.52)
i=1s=1
d S;
< [TTI BO:: o + ns o1 B + 5.0 (3.53)
i=1s=1

It can be immediately verified that B(67; aigtng, 1,580 +n;._o) is proportional to the marginal
p(07|D) so that the parameters are independent under the posterior too.



