The purpose of this tutorial sheet is to help you better understand the lecture material. Start early and do as many as you have time for. Even if you are unable to make much progress, you should still attend your tutorial.

Exercise 1. Kalman filtering

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions. For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability density function of a Gaussian random variable x with mean μ and variance σ^{2} by $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$,

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] . \tag{1}
\end{equation*}
$$

The transition and emission distributions are assumed to be

$$
\begin{align*}
p\left(h_{s} \mid h_{s-1}\right) & =\mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \tag{2}\\
p\left(v_{s} \mid h_{s}\right) & =\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) . \tag{3}
\end{align*}
$$

The distribution $p\left(h_{1}\right)$ is assumed Gaussian with known parameters. The $A_{s}, B_{s}, C_{s}, D_{s}$ are also assumed known.
(a) Show that h_{s} and v_{s} as defined in the update and observation equations

$$
\begin{align*}
h_{s} & =A_{s} h_{s-1}+B_{s} \xi_{s} \tag{4}\\
v_{s} & =C_{s} h_{s}+D_{s} \eta_{s} \tag{5}
\end{align*}
$$

follow the conditional distributions in (2) and (3). The random variables ξ_{s} and η_{s} are independent from the other variables in the model and follow a standard normal Gaussian distribution, e.g. $\xi_{s} \sim \mathcal{N}\left(\xi_{s} \mid 0,1\right)$.
Hint: For two constants c_{1} and $c_{2}, y=c_{1}+c_{2} x$ is Gaussian if x is Gaussian. In other words, an affine transformation of a Gaussian is Gaussian.

The equations mean that h_{s} is obtained by scaling h_{s-1} and by adding noise with variance B_{s}^{2}. The observed value v_{s} is obtained by scaling the hidden h_{s} and by corrupting it with Gaussian observation noise of variance D_{s}^{2}.
(b) Show that

$$
\begin{equation*}
\int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right) \mathrm{d} x \propto \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{6}
\end{equation*}
$$

Hint: While this result can be obtained by direct integration, an approach that avoids this is as follows: First note that $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y. We can thus consider the integral to correspond to the computation of the marginal of y from the joint. Using the equivalence of Equations (2)-(3) and (4)-(5), and the fact that the weighted sum of two Gaussian random variables is a Gaussian random variable then allows one to obtain the result.
(c) Show that

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{3}^{2}=\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-1}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{8}\\
& m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{9}
\end{align*}
$$

Hint: Work in the negative log domain.
(d) In the lecture, we have seen that $p\left(h_{t} \mid v_{1: t}\right) \propto \alpha\left(h_{t}\right)$ where $\alpha\left(h_{t}\right)$ can be computed recursively via the "alpha-recursion"

$$
\begin{equation*}
\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \quad \alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) . \tag{10}
\end{equation*}
$$

We have also seen that the alpha-recursion corresponds to sum-product message passing with

$$
\begin{equation*}
\mu_{h_{s} \rightarrow \phi_{s+1}}\left(h_{s}\right)=\alpha\left(h_{s}\right) \quad \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{11}
\end{equation*}
$$

and that $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \propto p\left(h_{s} \mid v_{1: s-1}\right)$. For continuous random variables, the sum above becomes an integral so that

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \quad \mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} . \tag{12}
\end{equation*}
$$

For a Gaussian prior distribution for h_{1} and Gaussian emission probability $p\left(v_{1} \mid h_{1}\right)$, $\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \propto p\left(h_{1} \mid v_{1}\right)$ is proportional to a Gaussian. We denote its mean by μ_{1} and its variance by σ_{1}^{2} so that

$$
\begin{equation*}
\alpha\left(h_{1}\right) \propto \mathcal{N}\left(h_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) \tag{13}
\end{equation*}
$$

Assuming $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$ (which holds for $s=2$), use Equation (6) to show that

$$
\begin{equation*}
\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}=A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2} \tag{15}
\end{equation*}
$$

(e) Use Equation (7) to show that

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{17}\\
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{18}
\end{align*}
$$

(f) Show that $\alpha\left(h_{s}\right)$ can be re-written as

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{20}\\
\sigma_{s}^{2} & =\left(1-K_{s} C_{s}\right) P_{s} \tag{21}\\
K_{s} & =\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}} \tag{22}
\end{align*}
$$

These are the Kalman filter equations and K_{s} is called the Kalman filter gain.
(g) Explain Equation (20) in non-technical terms. What happens if the variance D_{s}^{2} of the observation noise goes to zero?

