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Exercise 1. Conversion to factor graphs

(a) Draw an undirected graph and an undirected factor graph for p(x1, x2, x3) = p(x1)p(x2)p(x3|x1, x2)

Solution.

x1 x2

x3

x1 x2

p(x3|x1 x2)

x3

p(x1) p(x2)

(b) Draw an undirected factor graph for the directed graphical model defined by the graph below.

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The graph specifies probabilistic models that factorise as

p(x1, . . . , x4, y1, . . . , y4) = p(x1)p(y1|x1)
4∏
i=2

p(yi|xi)p(xi|xi−1)

It is the graph for a Hidden Markov model. The corresponding factor graph is shown
below.

y1

p(y1|x1)

y2

p(y2|x2)

y3

p(y3|x3)

y4

p(y4|x4)

p(x1) x1

p(x2|x1)
x2

p(x3|x2)
x3

p(x4|x3)
x4

(c) Draw the moralised graph and an undirected factor graph for directed graphical models defined by
the graph below (this kind of graph is called a polytree: there are no loops but a node may have
more than one parent).

x1 x2

x3 x4

x5 x6
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Solution. The moral graph is obtained by connecting the parents of the collider node
x4. See the graph on the left in the figure below.

For the factor graph, we note that the directed graph defines the following class of proba-
bilistic models

p(x1, . . . x6) = p(x1)p(x2)p(x3|x1)p(x4|x1, x2)p(x5|x4)p(x6|x4)

This gives the factor graph on right in the figure below.

x1 x2

x3 x4

x5 x6

p(x1) x1 p(x2)x2

p(x3|x1)

x3

p(x4|x1 x2)

x4

p(x5|x4)

x5

p(x6|x4)

x6

Note:

• The moral graph contains a loop while the factor graph does not. The factor graph
is still a polytree. This can be exploited for inference.

• One may choose to group some factors together in order to obtain a factor graph with
a particular structure (see factor graph below)

x1 x2

p(x3|x1)

x3

p(x4|x1 x2)p(x1)p(x2)

x4

p(x5|x4)p(x6|x4)

x5 x6

Exercise 2. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

Let all variables be binary, xi ∈ {0, 1}, and the factors be defined as follows:
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x1 φA

0 2
1 4

x2 φB

0 4
1 4

x1 x2 x3 φC

0 0 0 4
1 0 0 2
0 1 0 2
1 1 0 6
0 0 1 2
1 0 1 6
0 1 1 6
1 1 1 4

x3 x4 φD

0 0 8
1 0 2
0 1 2
1 1 6

x3 x5 φE

0 0 3
1 0 6
0 1 6
1 1 3

x5 φF

0 1
1 8

(a) Mark the graph with arrows indicating all messages that need to be computed for the computation
of p(x1).

Solution.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

→
←
↓

↓

←

←
←

←
← ←

(b) Compute the messages that you have identified.

Assuming that the computation of the messages is scheduled according to a common clock, group
the messages together so that all messages in the same group can be computed in parallel during a
clock cycle.

Solution. Since the variables are binary, each message can be represented as a two-
dimensional vector. We use the convention that the first element of the vector corresponds
to the message for xi = 0 and the second element to the message for xi = 1. For example,

µφA→x1µφA→x1µφA→x1 =

(
2
4

)
(S.1)

means that the message µφA→x1(x1) equals 2 for x1 = 0, i.e. µφA→x1(0) = 2.

The following figure shows a grouping (scheduling) of the computation of the messages.

φA
x1

φC

x2

φB

x3

φD
x4

φE
x5

φF

[1]
→

←
[5]

[2]↓

[1]↓

←
[4]

[2
]
←

[1]
←

←
[3]

←
[2]

←
[1]
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Clock cycle 1:

µφA→x1µφA→x1µφA→x1 =

(
2
4

)
µφB→x2µφB→x2µφB→x2 =

(
4
4

)
µx4→φDµx4→φDµx4→φD =

(
1
1

)
µφF→x5µφF→x5µφF→x5 =

(
1
8

)
(S.2)

Clock cycle 2:

µx2→φCµx2→φCµx2→φC = µφB→x2µφB→x2µφB→x2 =

(
4
4

)
µx5→φEµx5→φEµx5→φE = µφF→x5µφF→x5µφF→x5 =

(
1
8

)
(S.3)

Message µφD→x3 is defined as

µφD→x3(x3) =
∑
x4

φD(x3, x4)µx4→φD(x4) (S.4)

so that

µφD→x3(0) =
1∑

x4=0

φD(0, x4)µx4→φD(x4) (S.5)

= φD(0, 0)µx4→φD(0) + φD(0, 1)µx4→φD(1) (S.6)

= 8 · 1 + 2 · 1 (S.7)

= 10 (S.8)

µφD→x3(1) =
1∑

x4=0

φD(1, x4)µx4→φD(x4) (S.9)

= φD(1, 0)µx4→φD(0) + φD(1, 1)µx4→φD(1) (S.10)

= 2 · 1 + 6 · 1 (S.11)

= 8 (S.12)

and thus

µφD→x3µφD→x3µφD→x3 =

(
10
8

)
. (S.13)

The above computations can be written more compactly in matrix notation. Let φDφDφD be
the matrix that contains the outputs of φD(x3, x4)

φDφDφD =

(
φD(x3 = 0, x4 = 0) φD(x3 = 0, x4 = 1)
φD(x3 = 1, x4 = 0) φD(x3 = 1, x4 = 1)

)
=

(
8 2
2 6

)
. (S.14)

We can then write µφD→x3µφD→x3µφD→x3 in terms of a matrix vector product,

µφD→x3µφD→x3µφD→x3 = φDφDφDµx4→φDµx4→φDµx4→φD . (S.15)

Clock cycle 3:
Representing the factor φE as matrix φEφEφE ,

φEφEφE =

(
φE(x3 = 0, x5 = 0) φE(x3 = 0, x5 = 1)
φE(x3 = 1, x5 = 0) φE(x3 = 1, x5 = 1)

)
=

(
3 6
6 3

)
, (S.16)
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we can write

µφE→x3(x3) =
∑
x5

φE(x3, x5)µx5→φE (x5) (S.17)

as a matrix vector product,

µφE→x3µφE→x3µφE→x3 = φEφEφEµx5→φEµx5→φEµx5→φE (S.18)

=

(
3 6
6 3

)(
1
8

)
(S.19)

=

(
51
30

)
. (S.20)

Clock cycle 4:
Variable node x3 has received all incoming messages, and can thus output µx3→φC ,

µx3→φC (x3) = µφD→x3(x3)µφE→x3(x3). (S.21)

Using � to denote element-wise multiplication of two vectors, we have

µx3→φCµx3→φCµx3→φC = µφD→x3µφD→x3µφD→x3 �µφE→x3µφE→x3µφE→x3 (S.22)

=

(
10
8

)
�
(

51
30

)
(S.23)

=

(
510
240

)
. (S.24)

Clock cycle 5:
Factor node φC has received all incoming messages, and can thus output µφC→x1 ,

µφC→x1(x1) =
∑
x2,x3

φC(x1, x2, x3)µx2→φC (x2)µx3→φC (x3). (S.25)
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Writing out the sum for x1 = 0 and x1 = 1 gives

µφC→x1(0) =
∑
x2,x3

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) (S.26)

=φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,0) + (S.27)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,0) + (S.28)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,1) + (S.29)

φC(0, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,1) (S.30)

=4 · 4 · 510+ (S.31)

2 · 4 · 510+ (S.32)

2 · 4 · 240+ (S.33)

6 · 4 · 240 (S.34)

=19920 (S.35)

µφC→x1(1) =
∑
x2,x3

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) (S.36)

=φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,0) + (S.37)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,0) + (S.38)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(0,1) + (S.39)

φC(1, x2, x3)µx2→φC (x2)µx3→φC (x3) |(x2,x3)=(1,1) (S.40)

=2 · 4 · 510+ (S.41)

6 · 4 · 510+ (S.42)

6 · 4 · 240+ (S.43)

4 · 4 · 240 (S.44)

=25920 (S.45)

and hence

µφC→x1µφC→x1µφC→x1 =

(
19920
25920

)
(S.46)

After step 5, variable node x1 has received all incoming messages and the marginal can be
computed.

In addition to the messages needed for computation of p(x1) one can compute all messages
in the graph in five clock cycles, see Figure 1. This means that all marginals, as well as
the joints of those variables sharing a factor node, are available after five clock cycles.

(c) What is p(x1 = 1)?

Solution. We compute the marginal p(x1) as

p(x1) ∝ µφA→x1(x1)µφC→x1(x1) (S.47)
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φA

x1
φC

x2

φB

x3

φD

x4

φE

x5
φF

[1]
→

←
[5]

[2]
→ [2]↓ ↑[5]

[1]↓

←
[4]

[3]
→

[2
]
←
→
[4
]

[1]
←
→
[5]

←
[3]

[4]→

←
[2]

[5]
→

←
[1]

Figure 1: Answer to Exercise 2 Question (b): Computing all messages in five clock cycles. If
we also computed the messages toward the leaf factor nodes, we needed six cycles, but they are
not necessary for computation of the marginals so they are omitted.

which is in vector notation (
p(x1 = 0)
p(x1 = 1)

)
∝ µφA→x1µφA→x1µφA→x1 �µφC→x1µφC→x1µφC→x1 (S.48)

∝
(

2
4

)
�
(

19920
25920

)
(S.49)

∝
(

39840
103680

)
. (S.50)

Normalisation gives (
p(x1 = 0)
p(x1 = 1)

)
=

1

39840 + 103680

(
39840
103680

)
(S.51)

=

(
0.2776
0.7224

)
(S.52)

so that p(x1 = 1) = 0.7224.

Note the relatively large numbers in the messages that we computed. In other cases, one
may obtain very small ones depending on the scale of the factors. This can cause numerical
issues that can be addressed by working in the logarithmic domain (see Barber’s paragraph
on log messages, p86 in his book)

(d) Draw the factor graph corresponding to p(x1, x3, x4, x5|x2 = 1) and provide the numerical values
for all factors.

Solution. The pmf represented by the original factor graph is

p(x1, . . . , x5) ∝ φA(x1)φB(x2)φC(x1, x2, x3)φD(x3, x4)φE(x3, x5)φF (x5)
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The conditional p(x1, x3, x4, x5|x2 = 1) is proportional to p(x1, . . . , x5) with x2 fixed to
x2 = 1, i.e.

p(x1, x3, x4, x5|x2 = 1) ∝ p(x1, x2 = 1, x3, x4, x5) (S.53)

∝ φA(x1)φB(x2 = 1)φC(x1, x2 = 1, x3)φD(x3, x4)φE(x3, x5)φF (x5)
(S.54)

∝ φA(x1)φ
x2
C (x1, x3)φD(x3, x4)φE(x3, x5)φF (x5) (S.55)

where φx2C (x1, x3) = φC(x1, x2 = 1, x3). The numerical values of φx2C (x1, x3) can be read
from the table defining φC(x1, x2, x3), extracting those rows where x2 = 1,

x1 x2 x3 φC

0 0 0 4
1 0 0 2

→ 0 1 0 2
→ 1 1 0 6

0 0 1 2
1 0 1 6

→ 0 1 1 6
→ 1 1 1 4

so that

x1 x3 φx2C

0 0 2
1 0 6
0 1 6
1 1 4

The factor graph for p(x1, x3, x4, x5|x2 = 1) is shown below. Factor φB has disappeared
since it only depended on x2 and thus became a constant. Factor φC is replaced by φx2C
defined above. The remaining factors are the same as in the original factor graph.

φA
x1

φx2C

x3

φD
x4

φE
x5

φF

(e) Compute p(x1 = 1|x2 = 1), re-using messages that you have already computed for the evaluation
of p(x1 = 1).

Solution. The message µφA→x1 is the same as in the original factor graph and µx3→φ
x2
C

=

µx3→φC . This is because the outgoing message from x3 corresponds to the effective factor
obtained by summing out all variables in the sub-trees attached to x3 (without the φx2C
branch), and these sub-trees do not depend on x2.

The message µφx2C →x1
needs to be newly computed. We have

µφx2C →x1
(x1) =

∑
x3

φx2C (x1, x3)µx3→φ
x2
C

(S.56)
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or in vector notation

µφx2C →x1
µφx2C →x1
µφx2C →x1

= φx2Cφ
x2
Cφ
x2
C µx3→φ

x2
C

µx3→φ
x2
C

µx3→φ
x2
C

(S.57)

=

(
φx2C (x1 = 0, x3 = 0) φx2C (x1 = 0, x3 = 1)
φx2C (x1 = 1, x3 = 0) φx2C (x1 = 1, x3 = 1)

)
µx3→φ

x2
C

µx3→φ
x2
C

µx3→φ
x2
C

(S.58)

=

(
2 6
6 4

)(
510
240

)
(S.59)

=

(
2460
4020

)
(S.60)

We thus obtain for the marginal posterior of x1 given x2 = 1:(
p(x1 = 0|x2 = 1)
p(x1 = 1|x2 = 1)

)
∝ µφA→x1µφA→x1µφA→x1 �µφx2C →x1µφx2C →x1

µφx2C →x1
(S.61)

∝
(

2
4

)
�
(

2460
4020

)
(S.62)

∝
(

4920
16080

)
. (S.63)

Normalisation gives (
p(x1 = 0|x2 = 1)
p(x1 = 1|x2 = 1)

)
=

(
0.2343
0.7657

)
(S.64)

and thus p(x1 = 1|x2 = 1) = 0.7657. The posterior probability is slightly larger than the
prior probability, p(x1 = 1) = 0.7224.
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