The purpose of this additional sheet is to provide more practice and exam preparation material. N.B. The tutors are not required to work through this material in the tutorial.

Exercise 1. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:

Let all variables be binary, $x_{i} \in\{0,1\}$, and the factors be defined as follows:

x_{1}	x_{2}	x_{3}	ϕ_{A}
0	0	0	4
1	0	0	2
0	1	0	2
1	1	0	6
0	0	1	2
1	0	1	6
0	1	1	6
1	1	1	4

x_{2}	x_{3}	x_{4}	ϕ_{B}
0	0	0	2
1	0	0	2
0	1	0	4
1	1	0	2
0	0	1	6
1	0	1	8
0	1	1	4
1	1	1	2

x_{4}	x_{5}	ϕ_{C}
0	0	8
1	0	2
0	1	2
1	1	6

x_{4}	x_{6}	ϕ_{D}
0	0	3
1	0	6
0	1	6
1	1	3

(a) Draw the factor graph corresponding to $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$ and give the tables defining the new factors $\phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$ and $\phi_{D}^{x_{6}=1}\left(x_{4}\right)$ that you obtain.
(b) Find $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ using the elimination ordering $\left(x_{4}, x_{5}, x_{3}\right)$:
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{5} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{4}

Compute the table for the new factor $\tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5}

Compute the table for the new factor $\tilde{\phi}_{45}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3} Compute the table for the new factor $\tilde{\phi}_{453}\left(x_{2}\right)$
(c) Note that the previous variable ordering involved computing a new factor $\tilde{\phi}_{4}$ that depends on three variables x_{2}, x_{3}, and x_{5}, this involved computing 2^{3} numbers (i.e. the rows in the table for $\left.\tilde{\phi}_{4}\right)$. Instead, now find $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ using the elimination ordering $\left(x_{5}, x_{4}, x_{3}\right)$,
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{4}, \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5} Compute the table for the new factor $\tilde{\phi}_{5}\left(x_{4}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{4} Compute the table for the new factor $\tilde{\phi}_{54}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3} Compute the table for the new factor $\phi_{543}\left(x_{2}\right)$

