Exercise 1. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:

Let all variables be binary, $x_{i} \in\{0,1\}$, and the factors be defined as follows:

x_{1}	x_{2}	x_{3}	ϕ_{A}
0	0	0	4
1	0	0	2
0	1	0	2
1	1	0	6
0	0	1	2
1	0	1	6
0	1	1	6
1	1	1	4

x_{2}	x_{3}	x_{4}	ϕ_{B}
0	0	0	2
1	0	0	2
0	1	0	4
1	1	0	2
0	0	1	6
1	0	1	8
0	1	1	4
1	1	1	2

x_{4}	x_{5}	ϕ_{C}
0	0	8
1	0	2
0	1	2
1	1	6

x_{4}	x_{6}	ϕ_{D}
0	0	3
1	0	6
0	1	6
1	1	3

(a) Draw the factor graph corresponding to $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$ and give the tables defining the new factors $\phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$ and $\phi_{D}^{x_{6}=1}\left(x_{4}\right)$ that you obtain.

Solution. First condition on $x_{1}=0$:
Factor node $\phi_{A}\left(x_{1}, x_{2}, x_{3}\right)$ depends on x_{1}, thus we create a new factor $\phi_{A}^{x_{1}=0}\left(x_{2}, x_{3}\right)$ from the table for ϕ_{A} using the rows where $x_{1}=0$.

	x_{1}	x_{2}	x_{3}	ϕ_{A}
\rightarrow	0	0	0	4
	1	0	0	2
\rightarrow	0	1	0	2
	1	1	0	6
\rightarrow	0	0	1	2
	1	0	1	6
\rightarrow	0	1	1	6
	1	1	1	4

x_{2}	x_{3}	$\phi_{A}^{x_{1}=0}$
0	0	4
1	0	2
0	1	2
1	1	6

Next condition on $x_{6}=1$:
Factor node $\phi_{D}\left(x_{4}, x_{6}\right)$ depends on x_{6}, thus we create a new factor $\phi_{D}^{x_{6}=1}\left(x_{4}\right)$ from the table for ϕ_{D} using the rows where $x_{6}=1$.

(b) Find $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ using the elimination ordering $\left(x_{4}, x_{5}, x_{3}\right)$:
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{5} \mid x_{1}=\underset{\sim}{0}, x_{6}=1\right)$ by marginalising x_{4} Compute the table for the new factor $\tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5} Compute the table for the new factor $\tilde{\phi}_{45}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3} Compute the table for the new factor $\tilde{\phi}_{453}\left(x_{2}\right)$

Solution. Starting with the factor graph for $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$

Marginalising x_{4} combines the three factors ϕ_{B}, ϕ_{C} and $\phi_{D}^{x_{6}=1}$

Marginalising x_{5} modifies the factor $\tilde{\phi}_{4}$

Marginalising x_{3} combines the factors $\phi_{A}^{x_{1}=0}$ and $\tilde{\phi}_{45}$

We now compute the tables for the new factors $\tilde{\phi}_{4}, \tilde{\phi}_{45}, \tilde{\phi}_{453}$.
First find $\tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$

Next find $\tilde{\phi}_{45}\left(x_{2}, x_{3}\right)$

x_{2}	x_{3}	x_{5}	$\tilde{\phi}_{4}$
0	0	0	132
1	0	0	144
0	1	0	216
1	1	0	108
0	0	1	132
1	0	1	168
0	1	1	120
1	1	1	60

x_{2}	x_{3}	$\sum_{x_{5}} \tilde{\phi}_{4}\left(x_{2}, x_{3}, x_{5}\right)$		$\tilde{\phi}_{45}$
0	0	$132+132$	$=$	264
1	0	$144+168$	$=$	312
0	1	$216+120$	$=$	336
1	1	$108+60$	$=$	168

Finally find $\tilde{\phi}_{453}\left(x_{2}\right)$

	x_{3}	$\phi_{A}^{x_{1}=0}$					so that
0	0	4		0	264		
1	0	2	1	0	312		
0	1	2	0	1	336		
1	1	6	1	1	168		
$x_{2} \quad \sum_{x_{3}} \tilde{\phi}_{45}\left(x_{2}, x_{3}\right)$							$\tilde{\phi}_{453}$
		$(4 * 264)+(2 * 336)$				$=$	1728
		$(2 * 312)+(6 * 168)$				$=$	1632

Where the normalising constant is $Z=1728+1632$, our conditional marginal can be found

$$
\begin{equation*}
p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)=\binom{1728 / Z}{1632 / Z}=\binom{0.514}{0.486} \tag{S.1}
\end{equation*}
$$

(c) Note that the previous variable ordering involved computing a new factor $\tilde{\phi}_{4}$ that depends on three variables x_{2}, x_{3}, and x_{5}, this involved computing 2^{3} numbers (i.e. the rows in the table for $\tilde{\phi}_{4}$). Instead, now find $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ using the elimination ordering (x_{5}, x_{4}, x_{3}),
(i) Draw the graph for $p\left(x_{2}, x_{3}, x_{4}, \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{5}

Compute the table for the new factor $\tilde{\phi}_{5}\left(x_{4}\right)$
(ii) Draw the graph for $p\left(x_{2}, x_{3} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{4}

Compute the table for the new factor $\tilde{\phi}_{54}\left(x_{2}, x_{3}\right)$
(iii) Draw the graph for $p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)$ by marginalising x_{3}

Compute the table for the new factor $\tilde{\phi}_{543}\left(x_{2}\right)$

Solution. Starting with the factor graph for $p\left(x_{2}, x_{3}, x_{4}, x_{5} \mid x_{1}=0, x_{6}=1\right)$

Marginalising x_{5} modifies the factor ϕ_{C}

Marginalising x_{4} combines the three factors $\phi_{B}, \tilde{\phi}_{5}$ and $\phi_{D}^{x_{6}=1}$

Marginalising x_{3} combines the factors $\phi_{A}^{x_{1}=0}$ and $\tilde{\phi}_{54}$

We now compute the tables for the new factors $\tilde{\phi}_{5}, \tilde{\phi}_{54}$, and $\tilde{\phi}_{543}$.
First find $\tilde{\phi}_{5}\left(x_{4}\right)$

x_{4}	x_{5}	ϕ_{C}
0	0	8
1	0	2
0	1	2
1	1	6

so that

x_{4}	$\sum_{x_{5}} \phi_{C}\left(x_{4}, x_{5}\right)$	
0	$\tilde{\phi}_{5}$	
1	$2+2$	$=$

Next find $\tilde{\phi}_{54}\left(x_{2}, x_{3}\right)$

Finally find $\tilde{\phi}_{543}\left(x_{2}\right)$

As with the less efficient ordering in the previous part, we should come to the same result for our conditional marginal distribution. Where the normalising constant is $Z=1728+1632$, the conditional marginal can be found

$$
\begin{equation*}
p\left(x_{2} \mid x_{1}=0, x_{6}=1\right)=\binom{1728 / Z}{1632 / Z}=\binom{0.514}{0.486} \tag{S.2}
\end{equation*}
$$

Note that with the first variable ordering $\left(x_{4}, x_{5}, x_{3}\right)$ we had to compute 14 numbers $\left(2^{3}+2^{2}+2^{1}=14\right)$, but with the better variable ordering $\left(x_{5}, x_{4}, x_{3}\right)$ we only needed to compute 8 numbers $\left(2^{1}+2^{2}+2^{1}=8\right)$. Choosing a reasonable variable ordering has a direct effect on the computational complexity of variable elimination. This effect becomes even more pronounced when the domain of our discrete variables has a size greater than 2 (binary variables), or if the variables are continuous.

