

These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the tutorial sheet. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the tutorial sheet.

**I-map** — The set of independencies that a graph G asserts is denoted  $\mathcal{I}(G)$ . G is said to be an independency map (I-map) for a set of independencies  $\mathcal{U}$  if,

$$\mathcal{I}(G) \subseteq \mathcal{U} \tag{1}$$

A complete graph is an I–map since it makes no assertions, this means that an I–map is not necessarily useful.

While the set of "target" independencies  $\mathcal{U}$  can be specified in any way, they are often the independencies that a certain distribution p satisfies. This set of independencies is denoted by  $\mathcal{I}(p)$ .

**Minimal I-map** — A "sparsified" I-map: A graph G such that if any edge is removed,  $\mathcal{I}(G) \not\subseteq \mathcal{U}$ .

**P-map** — G is said to be a perfect map (P-map) for a set of independencies  $\mathcal{U}$  if  $\mathcal{I}(G) = \mathcal{U}$ 

## Constructing minimal I-maps

Undirected graphs —  $\forall x_i \in N$  connect  $x_i$  to all variables in MB $(x_i)$ .

Directed graphs — Assume an ordering  $\mathbf{x} = (x_1, \ldots, x_d)$ , then  $\forall x_i \in \mathbf{x}$  set  $pa_i$  to  $\pi_i$ , where  $\pi_i$  is a minimal subset of the pre<sub>i</sub> such that

$$x_i \perp \{ \operatorname{pre}_i \setminus \pi_i \} \mid \pi_i \tag{2}$$

## I-equivalence

Undirected graphs — The minimal I-map is unique.

Directed graphs —  $\mathcal{I}(G_1)$  and  $\mathcal{I}(G_2)$  are I-equivalent *iff* they have the same skeleton and set of immoralities.

- Skeleton G without arrow heads, i.e. connections irrespective of direction.
- Immoralities The set of collider nodes without covering edge ("married parents")

## Converting I-maps

Directed  $\rightarrow$  undirected graphs — Using the factorisation  $p(x_1, \ldots, x_d) = \prod_{i=1}^d p(x_i \mid pa_i)$ , form cliques  $(x_i, pa_i)$  for all nodes  $x_i$ .

Undirected  $\rightarrow$  directed graphs — Read required independencies from the undirected graph (using the local Markov property), build the directed graph using some topological ordering.