The purpose of this tutorial sheet is to help you better understand the lecture material. Start early and do as many as you have time for. Even if you are unable to make much progress, you should still attend your tutorial.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

$$
p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{14}\left(x_{1}, x_{4}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{25}\left(x_{2}, x_{5}\right) \phi_{45}\left(x_{4}, x_{5}\right)
$$

(a) Visualise it as an undirected graph.
(b) What are the neighbours of x_{3} in the graph?
(c) Do we have $x_{3} \Perp x_{4} \mid x_{1}, x_{2}$?
(d) What is the Markov blanket of x_{4} ?
(e) On which minimal set of variables A do we need to condition to have $x_{1} \Perp x_{5} \mid A$?

Exercise 2. Factorisation and independencies for undirected graphical models

We here consider the graph in Figure 1.

Figure 1: Graph for Exercise 2
(a) What is the set of Gibbs distributions that are induced by the graph?
(b) Let p be a pdf that factorises according to the graph. Can we expect that $p\left(x_{3} \mid x_{2}, x_{4}\right)=$ $p\left(x_{3} \mid x_{4}\right)$?
(c) Explain why $x_{2} \Perp x_{5} \mid x_{1}, x_{3}, x_{4}, x_{6}$ holds.
(d) Assume you would like to approximate $\mathbb{E}\left(x_{1} x_{2} x_{5} \mid x_{3}, x_{4}\right)$, i.e. the expected value of the product of x_{1}, x_{2}, and x_{5} given x_{3} and x_{4}, with a sample average. Do you need to have joint observations for all five variables x_{1}, \ldots, x_{5} ?

Exercise 3. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The probability density or mass functions over d random variables x_{1}, \ldots, x_{d} then take the form

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i \leq j} \phi_{i j}\left(x_{i}, x_{j}\right)
$$

These models are typically called pairwise Markov networks.
(a) Let $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$ where \mathbf{A} is symmetric and $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$. What are the corresponding factors $\phi_{i j}$ for $i \leq j$?
(b) For $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$, show that $x_{i} \Perp x_{j} \mid\left\{x_{1}, \ldots, x_{d}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ if the (i, j)-th element of \mathbf{A} is zero.

